
10/15/24

1

Long-short	Term	Memory
Encoder-Decoder
Attention
MICHAEL	WOLLOWSKI

SUMMARY	OF	CHAPTER	9: 	RNNS	AND	LSTMS	

FROM:	SPEECH	AND	LANGUAGE	PROCESSING. 	

BY	 JURAFSKY AND	MARTIN. 	HTTPS://WEB.STANFORD.EDU/~JURAFSKY/SLP3/

Limitations	of	RNNs
RNNs	are	pretty	powerful.

However,	they	have	a	drawback.

Consider	the	statement:	“The	flights	the	airline	was	cancelling	were	full.”	

What	does	“was”	refer	to?
◦ ”airline”	i.e.	the	prior	word

What	does	“were”	refer	to?
◦ “flights”	i.e.	a	word	much	earlier	in	the	sentence



10/15/24

2

Limitations	of	RNNs
The	recurrent	units	of	an	RNN	carry	state	information.

By	this	we	mean	that	they	can	“remember”	information	that	may	be	useful	for	
processing	the	next	or	next	few	pieces	of	input.

Think	about	the	task	of	predicting	the	next	word.

This	depends	on	the	prior	few	words.

The	“challenge”	is	that	it	has	to	remember	data:
◦ from	the	recent	past	as	well	as	
◦ potentially	from	the	more	distant	past.

Limitations	of	RNNs
Vanishing	gradients.

Source:	https://distill.pub/2019/memorization-in-rnns/



10/15/24

3

Long-Short	Term	Memory	(LSTM)	Nets
To	address	the	limitations	of	RNNs,	more	complex	units	were	developed.

Those	units	are	designed	to	explicitly	manage	context

They	have	two	inputs:	
◦ the	data	pushed	through	the	network	and	
◦ context	data,	maintained	by	the	network.

In	Long	short-term	memory	(LSTM)	networks,	the	units	are	designed	to:
◦ remove	information	that	is	no	longer	needed	from	the	context,	and	
◦ adding	information	to	the	context	that	is	likely	to	be	relevant	for	later	
processing.

Long-Short	Term	Memory	(LSTM)	Nets
The	units	use	gates	to	control	the	flow	of	information	into	and	out	of	the	units.

These	gates	are	implemented	through	the	use	of	additional	weights	that	operate	
sequentially	on	the	input,	the	previous	hidden	layer	and	the	previous	context	
layers.	



10/15/24

4

LSTM	Units	in	Detail
Let’s	zoom	in	and	talk	about	some	detail.

Btw.	the	images	are	from	the	fabulous	blog	
entry	referenced	below.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Image	source:	https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e



10/15/24

5

Long-Short	Term	Memory	(LSTM)	Nets
Below	is	an	LSTM	unit	shown	in	time.

Notice	the	input	xt,	output	ht context	(upper	arrows)	and	hidden	state	(lower	
arrows)

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Units	in	Detail
Let’s	have	a	look	at	the	context	
data.
Early	on,	the	unit	performs	
multiplication	on	context	vector	C
and	soon	afterwards	the	unit	
performs	addition	on	it.
The	first	operation	is	designed	to	
remove	data	from	the	context	
vector.
The	second	operation	is	designed	to
add	data	to	the	context	vector.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



10/15/24

6

LSTM	Units	in	Detail:	The	Forget	Gate
Let’s	have	a	look	at	how	to	“remove”	
from	the	context	vector.
At	first,	the	unit	concatenates	the	input	
and	hidden	state	vectors.
The	weights	into	the	sigmoid	unit	will	
be	trained	to	determine	information	
that	is	and	is	not	relevant	given	the	
current	input	x	and	the	hidden	state.	
Vector	f is	multiplied	with	vector	C.
f	acts	as	a	mask,	“zeroing”	out	
information	that	should	be	forgotten.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Units	in	Detail:	The	Forget	Gate
The	weights	for	the	forget	gate.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



10/15/24

7

LSTM	Units	in	Detail:	Input	Gate
Let’s	have	a	look	at	how	to	“add”	to	the	
context	vector.

The	tanh activation	function	creates	a	
vector	of	new	candidate	values.

An	additional	sigmoid	activation	function	
creates	a	mask	to	determine	which	
values	to	add	to	the	context	vector.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Units	in	Detail:	Input	Gate
Next,	perform	multiplication	on	the	
vector	produced	by	the	input	gate	and	
the	candidate	values	produced	by	tanh.

The	resulting	vector	is	added to	the	
context	vector.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



10/15/24

8

LSTM	Units	in	Detail:	Input	Gate
The	weights	for	the	input	gate.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Units	in	Detail:	Output	Gate
We	are	done	with	maintaining	the	context.

Next,	let	us	have	a	look	at	calculating	the	output	
and	updated	hidden	state.

The	output	gate	is	used	to	decide	what	data	is	
required	for	the	current	hidden	state.

Using	yet	another	sigmoid	activation	function,	
the	unit	determines	which	values	are	relevant.

Before	using	the	sigmoid	function	as	a	mask	on	
the	context	vector,	the	unit	runs	it	through	tanh.

This	is	necessary	because	the	addition	to	the	
context	vector	may	have	produces	values	outside	
of	the	range	[-1	..	1]

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



10/15/24

9

LSTMs	– A	different	perspective
On	the	next	slide,	you	see	an	image	of	an	LSTM	unit.

It	highlights	the	matrices	used	for	running	it.

As	you	may	imagine	the	more	matrices,	the	more	weights	that	need	to	be	
learned,	the	more	computing	time	it	takes	to	train	the	network.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	January	21,	2022.	

Weight	matrices	in	an	LSTM	Unit



10/15/24

10

Review	of	NN	units

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	January	12,	2022.	

On	the	right,	you	see	
units	and	the	sort	of	
input	they	take.	

Common	RNN
NLP	Architectures

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



10/15/24

11

Encoder-Decoder
• Also	called	sequence-to-sequence	network
• Used	when	an	input	sequence	is	to	be	translated	to	an	output	sequence.
• Especially	when	they	are	of	a	different	lengths.
• Example:	machine	translation

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Encoder-Decoder
The	encoder	network	takes	an	input	sequence	and	
creates	a	contextualized	representation	of	it,	called	the	context.	

Encoder-decoder	networks	consist	of	three	conceptual	components:	

1. An	encoder	that	accepts	an	input	sequence,	x1:n,	and	generates	a	corresponding	sequence	of	
contextualized	representations,	h1:n.	

2. A	context	vector,	c,	which	is	a	function	of	h1:n,	conveys	the	essence	of	the	input	to	the	
decoder.	

3. A	decoder,	which	accepts	c	as	input	generates	an	arbitrary	length	sequence	of	hidden	states	
h1:m,	from	which	a	corresponding	sequence	of	output	states	y1:m,	can	be	obtained.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



10/15/24

12

Translation	with	a	
Basic	RNN	version

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

<s>	is	the	sentence	separator	token.
Translate	the	English	source	text	
“the	green	witch	arrived”
to	a	Spanish	sentence	
“llego	́	la	bruja	verde”	

Translation	with	a	
Basic	RNN	version

Then	begins	the	generation	of	the	output.
This	is	done	one	word	at	a	time.
Initially,	i.e.	<s>	is	given	the	context,	i.e.	hn
From	then	on,	the	context	(or	hn)	is	passed	on.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

To	translate	a	source	text,	we	run	it	
through	the	RNN	to	generate	hidden	
states.	
In	this	version,	the	context	is	simply	hn



10/15/24

13

A	Closer	Look	at	the	Basic	RNN	version

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

In	the	figure	on	the	right,	the	
context	vector	is	made	available	
to	all of	the	decoders	hidden	
states.
This	is	done	to	ensure	that	the	
influence	of	the	context	vector	
does	not	wane	as	the	output	
sequence	is	generated.	

Training	the	Encoder-Decoder	Model

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Each	training	example	is	a	
tuple	of	paired	strings:	a	
source	and	a	target.

For	Machine	translation,	the	
training	data	typically	consists	
of	sets	of	sentences	and	their	
translations.	



10/15/24

14

Training	the	Encoder-
Decoder	Model

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

The	source	and	target	are	
separated	by	<s>	the	
sentence	token.

Starting	with	the	seperator
token,	the	network	is	trained	
autoregressively	to	predict	
the	next	word.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



10/15/24

15

Attention

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

The	encoder-decoder	model	is	appealing	because	of	its	clean	separation	of	the	
encoder	and	decoder.
The	encoder	builds	a	representation	of	the	source	text.
The	decoder	uses	this	context	to	generate	a	target	text.	
The	context	vector	is	hn,	the	hidden	state	of	the	last	(nth)	time	step	of	the	source	text.	

Attention

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Challenge:	The	final	hidden	state	must	represent	absolutely	everything	about	the	
meaning	of	the	source	text.
This	is	because	it	is	the	only	thing	the	decoder	knows	about	the	source	text.
It	acts	somewhat	as	a	bottleneck:
◦ It	has	to	contain	information	at	the	beginning	of	the	sentence,	
◦ As	well	as	from	the	more	recent	portion	of	the	sentence.

In	other	words,	how	much	information	can	one	pack	into	this	vector?



10/15/24

16

Attention
The	attention	mechanism	is	a	
solution	to	the	bottleneck	problem.
It	collects	information	from	all	the	
hidden	states	of	the	encoder,	not	just	
the	last	hidden	state.	
In	the	attention	mechanism,	the	
context	vector	c	is	a	function	of	the	
hidden	states	of	the	encoder:	
c=f(he1...hen).	
We	create	a	single	fixed-length	vector	
c	by	taking	a	weighted	sum	of	all	the	
encoder	hidden	states.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Attention

This	context	vector,	ci,	is	generated	anew	with	each	decoding	step.

This	context	is	made	available	during	decoding,	along	with	the	prior	hidden	state	and	the	previous	
output	generated	by	the	decoder.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



10/15/24

17

Attention

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	


