
Proc. Natl. Acad. Sci. USA
Vol. 81, pp. 3088-3092, May 1984
Biophysics

Neurons with graded response have collective computational
properties like those of two-state neurons

(associative memory/neural network/stability/action potentials)

J. J. HOPFIELD
Divisions of Chemistry and Biology, California Institute of Technology, Pasadena, CA 91125; and Bell Laboratories, Murray Hill, NJ 07974

Contributed by J. J. Hopfield, February 13, 1984

ABSTRACT A model for a large network of "neurons"
with a graded response (or sigmoid input-output relation) is
studied. This deterministic system has collective properties in
very close correspondence with the earlier stochastic model
based on McCulloch-Pitts neurons. The content-addressable
memory and other emergent collective properties of the origi-
nal model also are present in the graded response model. The
idea that such collective properties are used in biological sys-
tems is given added credence by the continued presence of such
properties for more nearly biological "neurons." Collective
analog electrical circuits of the kind described will certainly
function. The collective states of the two models have a simple
correspondence. The original model will continue to be useful
for simulations, because its connection to graded response sys-
tems is established. Equations that include the effect of action
potentials in the graded response system are also developed.

Recent papers (1-3) have explored the ability of a system of
highly interconnected "neurons" to have useful collective
computational properties. These properties emerge sponta-
neously in a system having a large number of elementary
"neurons." Content-addressable memory (CAM) is one of
the simplest collective properties of such a system. The
mathematical modeling has been based on "neurons" that
are different both from real biological neurons and from the
realistic functioning of simple electronic circuits. Some of
these differences are major enough that neurobiologists and
circuit engineers alike have questioned whether real neural
or electrical circuits would actually exhibit the kind of be-
haviors found in the model system even if the "neurons"
were connected in the fashion envisioned.
Two major divergences between the model and biological

or physical systems stand out. Real neurons (and real physi-
cal devices such as operational amplifiers that might mimic
them) have continuous input-output relations. (Action po-
tentials are omitted until Discussion.) The original modeling
used two-state McCulloch-Pitts (4) threshold devices having
outputs of 0 or 1 only. Real neurons and real physical circuits
have integrative time delays due to capacitance, and the time
evolution of the state of such systems should be represented
by a differential equation (perhaps with added noise). The
original modeling used a stochastic algorithm involving sud-
den 0-1 or 1-0 changes of states of neurons at random times.
This paper shows that the important properties of the origi-
nal model remain intact when these two simplifications of
the modeling are eliminated. Although it is uncertain wheth-
er the properties of these new continuous "neurons" are yet
close enough to the essential properties of real neurons
(and/or their dendritic arborization) to be directly applicable
to neurobiology, a major conceptual obstacle has been elimi-
nated. It is certain that a CAM constructed on the basic ideas

of the original model (1) but built of operational amplifiers
and resistors will function.

Form of the Original Model

The original model used two-state threshold "neurons" that
followed a stochastic algorithm. Each model neuron i had
two states, characterized by the output Vi of the neuron hav-
ing the values V? or VI (which may often be taken as 0 and 1,
respectively). The input of each neuron came from two
sources, external inputs Ii and inputs from other neurons.
The total input to neuron i is then

Input to i = Hi = E TijVj + ii.
jsi

[1]

The element Tij can be biologically viewed as a description
of the synaptic interconnection strength from neuron j to
neuron i.
CAM and other useful computations in this system involve

the change of state of the system with time. The motion of
the state of a system of N neurons in state space describes
the computation that the set of neurons is performing. A
model therefore must describe how the state evolves in time,
and the original model describes this in terms of a stochastic
evolution. Each neuron samples its input at random times. It
changes the value of its output or leaves it fixed according to
a threshold rule with thresholds Ui.

ViV ifE TiVj+ I, < U
[2]

Vi if E T11Vj + I, > U'.
iji

The interrogation of each neuron is a stochastic process, tak-
ing place at a mean rate W for each neuron. The times of
interrogation of each neuron are independent of the times at
which other neurons are interrogated. The algorithm is thus
asynchronous, in contrast to the usual kind of processing
done with threshold devices. This asynchrony was deliber-
ately introduced to represent a combination of propagation
delays, jitter, and noise in real neural systems. Synchronous
systems might have additional collective properties (5, 6).
The original model behaves as an associative memory (or

CAM) when the state space flow generated by the algorithm
is characterized by a set of stable fixed points. If these stable
points describe a simple flow in which nearby points in state
space tend to remain close during the flow (i.e., a nonmixing
flow), then initial states that are close (in Hamming distance)
to a particular stable state and far from all others will tend to
terminate in that nearby stable state.

Abbreviations: CAM, content-addressable memory; RC, resist-
ance-capacitance.
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If the location of a particular stable point in state space is
thought of as the information of a particular memory of the
system, states near to that particular stable point contain
partial information about' that memory. From an initial state
of partial information about a memory, a final stable state
with all the information of the memory is found. The memo-
ry is reached not by knowing an address, but rather by sup-
plying in the initial state some subpart of the memory. Any
subpart of adequate size will do-the memory is truly ad-
dressable by content ratner than location. A given T matrix
contains many memories simultaneously, which are recon-
structed individually from partial information in an initial
state.
Convergent flow to stable states is the essential feature of

this CAM operation. There is a simple mathematical condi-
tion which guarantees that the state space flow algorithm
converges on stable states. Any symmetric T with zero diag-
onal elements (i.e., Ti = T1i, Tii = 0) will produce such a
flow. The proof of this property followed from the construc-
tion of an appropriate energy function that is always de-
creased by any state change produced by the algorithm.
Consider the function

E = - >1Ej T11ViVj - E I1V, + UiVI. [3]
2 i~j

The change AE in E due to changing the state of neuron i by
Avi is

AE =-Z TiiVj + Ii - Ui AVi. [4]

But according to the algorithm, A Vi is positive only when the
bracket is positive, and similarly for the negative case. Thus
any change in E under the algorithm is negative. E is bound-
ed, so the iteration of the algorithm must lead to stable states
that do not further change with time.

A Continuous, Deterministic Model

We now construct a model that is based on continuous varia-
bles and responses but retains all the significant behaviors of
the original model. Let the output variable Vi for neuron i
have the range VP < Vi < V! and be a continuous and mono-
tone-increasing function of the instantaneous input ui to neu-
ron i. The typical input-output relation g1(u,) shown in Fig.
la is sigmoid with asymptotes V? and Vi. For neurons ex-
hibiting action potentials, ui could be thought of as the mean
soma potential of a neuron from the total effect of its excit-
atory and inhibitory inputs. Vi can be viewed as the short-
term average of the firing rate of the cell i. Other biological
interpretations are possible- for example, nonlinear pro-
cessing may be done at junctions in a dendritic arbor (7), and
the model "neurons" could represent such junctions. In
terms of electrical circuits, g,{u1) represents the input-output
characteristic of a nonlinear amplifier with negligible re-
sponse time. It is convenient also to define the inverse out-
put-input relation, g7-(V).

In a biological system, ui will lag behind the instantaneous
outputs Vj of the other cells because of the input capacitance
C of the cell membranes' the transmembrane resistance R,
and the finite impedance TIJ between the output Vj and the
cell body of cell i. Thus there is a resistance-capacitance
(RC) charging equation that determines the rate of change of
ui.

Ci(dui/dt) = I TijVj- ui/Ri + Ii
J rci

ui = gi (i)

I

FIG. 1. (a) The sigmoid input-output relation for a typical neu-
ron. All the g(u) of this paper have such a form, with possible hori-
zontal and vertical translations. (b) The input-output relation g(Xu)
for the "neurons" of the continuous model for three values of the
gain scaling parameter X. (c) The output-input relation u = g-' (V)
for the g shown in b. (d) The contribution of g to the energy Qf Eq. 5
as a function of V.

TijVj represents the electrical current input to cell i due to
the present potential of cell j, and Tij is thus the synapse
efficacy. Linear summing of inputs is assumed. Tij of both
signs should occur. Ii is any other (fixed) input current to
neuron i.
The same set of equations represents the resistively con-

nected network of electrical amplifiers sketched in Fig. 2. It
appears more complicated than the description of the neural
system because the electrical problem of providing inhibition
and excitation requires an additional inverting amplifier and
a negative signal wire. The magnitude of Tij is 1/Rij, where
R is the resistor connecting the output ofj to the input line i,
wf~ile the sign of Tij is determined by the choice of the posi-

neuron

7 amplifier 7inverting amplifier
* resistor in Tij network

FIG. 2. An electrical circuit that corresponds to Eq. 5 when the
amplifiers are fast. The input capacitance and resistances are not
drawn. A particularly simple special case can have'all positive Tij of
the same strength and no negative Tij and replaces the array of nega-
tive wires with a single negative feedback amplifier sending a com-
mon output to each "neuron."

Biophysics: Hopfield
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tive or negative output of amplifier j at the connection site.
Ri is now

1/Ri = 1/pi + 1/Rij, [6]

where Pi is the input resistance of amplifier i. Ci is the total
input capacitance of the amplifier i and its associated input
lead. We presume the output impedance of the amplifiers is
negligible. These simplifications result in Eq. 5 being appro-
priate also for the network of Fig. 2.

Consider the quantity

E =- E!E i~
2 jj

Vj

+>E (1/R1) g7 (V)dV + E IiVi. [7]

Its time derivative for a symmetric T is

dE/dt = -a dVi/dt TijV/ - ui/Ri + Ii)* [8]

The parenthesis is the right-hand side of Eq. 5, so

dE/dT = -a Ci(dVi/dt)(dui/dt)
[9]

= _-E Cigg"(Vj)(dVi/dt)2.

Since g7'(V1) is a monotone increasing function and Ci is
positive, each term in this sum is nQnnegative. Therefore

dE/dt ' 0, dE/dt = 0 -* dVi/dt = 0 for all i. [10]

Together with the boundedness of E, Eq. 10 shows that the
time evolution of the system is a motion in state space that
seeks out minima in E and comes to a stop at such points. E
is a Liapunov function for the system.

This deterministic model has the same flow properties in
its continuous space that the stochastic model does in its dis-
crete space. It can therefore be used in CAM or any other
computational task for which an energy function is essential
(3). We expect that the qualitative effects of disorganized or
organized anti-symmetric parts of Tij should have similar ef-
fects on the CAM operation of the new' and old system. The
new computational behaviors (such as learning sequences)
that can be produced by antisymmetric contributions to Tij
within the stochastic model will also hold for the determinis-
tic continuous model. Anecdotal support for these assertions
comes from unpublished work of John Platt (California Insti-
tute of Technology) solving Eq. 5 on a computer with some
random Tij removed from an otherwise symmetric T, and
from experimental work of John Lambe (Jet Propulsion Lab-
oratory), David Feinstein (California Institute of Technolo-
gy), and Platt generating sequences of states by using an
antisymmetric part of T in a real circuit of a six "neurons"
(personal communications).

Relation Between the Stable States of the Two Models

For a given T, the stable states of the continuous system
have a simple correspondence with the stable states of the
stochastic system. We will work with a slightly simplified
instance of the general equations to put a minimum of mathe-
matics in the way of seeing the correspondence. The same
basic idea carries over, with more arithmetic, to the general
case.

Consider the case in which V? < 0 < V! for all i. Then the
zero of voltage for each Vi can be chosen such that gi(O) = 0
for all i. Because the values of asymptotes are totally unim-
portant in all that follows, we will simplify notation by taking
them as ± 1 for all i. The second simplification is to treat the
case in which Ii = 0 for all i. Finally, while the continuous
case has an energy function with self-connections Tij, the
discrete case need not, so Ti = 0 will be assumed for the
following analysis.

This continuous system has for symmetric T the underly-
ing energy function

E = -2 E E TijViVj + 2E lR| g['(V)dV. [11]2 jj

Where are the maxima and minima of the first term of Eq.
11 in the domain of the hypercube -1 c Vi c 1 for all i? In
the usual case, all extrema lie at corners of the N-dimension-
al hypercube space. [In the pathological case that T is a posi-
tive or negative definite matrix, an extrermum is also possible
in the interior of the space. This is not the case for informa-
tion storage matrices of the usual type '(1).]
The discrete, stochastic algorithm searches for minimal

states at the corners of the hypercube-corners that are low-
er than adjacent corners. Since E is a linear function of a
single Vi along any cube edge, the energy minima (or maxi-
ma) of

E =-- E Z T,V V2 isj
[12]

for the discrete space Vi = + 1 are exactly the same corners
as the energy maxima and minima for the continuous case
-1 ' Vi . 1.
The second term in Eq. 11 alters the overall picture some-

what. To understand that alteration most easily, the gain g
can be scaled, replacing

Vi = gi(ui) by Vi = g1(Aud)
and

-i= g l(Vi) by ui = (1/x)gi7(V1). [13]

This scaling changes the steepness of the sigmoid gain curve
without altering the output asymptotes, as indicated in Fig.
lb. gi(x) now represents a standard form in which the scale
factor X = 1 corresponds to a standard gain, X >> 1 to a
system with very high gain and step-like gain curve, and X
small corresponds to a low gain and flat sigmoid curve (Fig.
lb). The second term in E is now

[14]

The integral is zero for Vi = 0 and positive otherwise, getting
very large as Vi approaches + 1 because of the slowness with
which g(V) approaches its asymptotes (Fig. 1d). However,
in the high-gain limit A-X00 this second term becomes negli-
gible, and the locations of the maxima and minima of the full
energy expression become the same as that of Eq. 12 or Eq.
3 in the absence of inputs and zero thresholds. The only sta-
ble points of the very high gain, continuous, deterministic
system therefore correspond to the stable points of the sto-
chastic system.
For large but finite X, the second term in Eq. 11 begins to

contribute. The form of gi(Yi) leads to a large positive contri-
bution near all surfaces, edges, and corners of the hypercube
while it still contributes negligibly far from the surfaces. This
leads to an energy surface that still has its maxima at corners
but the minima become displaced slightly toward the interior

3090 Biophysics: Hopfield
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FIG. 3. An energy contour map for a two-neuron, two-stable-
state system. The ordinate and abscissa are the outputs of the two
neurons. Stable states are located near the lower left and upper right
corners, and unstable extrema at the other two corners. The arrows

show the motion of the state from Eq. 5. This motion is not in gener-

al perpendicular to the energy contours. The system parameters are

T12 = T21 = 1, X = 1.4, and g(u) = (2/IT)tan-1 (irTu/2). Energy con-

tours are 0.449, 0.156, 0.017, -0.003, -0.023, and -0.041.

of the space._As X decreases, each minimum moves further
inward. As X is further decreased minima disappear one at a

time, when the topology of the energy surface makes a mini-
mum and a saddle point coalesce. Ultimately, for very small
X, the second term in Eq. 11 dominates, and the only mini-
mum is at Vi = 0. When the gain is large enough that there
are many minima, each is associated with a well-defined
minimum of the infinite gain case-as the gain is increased,
each minimum will move until it reaches a particular cube
corner when X -* oo. The same kind of mapping relation

holds in general between the continuous deterministic sys-

tem with sigmoid response curves and the stochastic model.
An energy contour map for a two-neuron (or two opera-

tional amplifier) system with two stable states is illustrated
in Fig. 3. The two axes are the outputs of the two amplifiers.
The upper left and lower right corners are stable minima for
infinite gain, and the minima are displaced inward by the
finite gain.
There are many general theorems about stability in net-

works of differential equations representing chemistry, cir-
cuits, and biology (8-12). The importance of this simple sym-

metric system is not merely its stability, but the fact that the
correspondence with a discrete system lends it a special rela-
tion to elementary computational devices and concepts.

DISCUSSION
Real neurons and real amplifiers have graded, continuous
outputs as a function of their inputs (or sigmoid input-output
curves of finite steepness) rather than steplike, two-state re-
sponse curves. Our original stochastic model of CAM and
other collective properties of assemblies of neurons was
based on two-state neurons. A continuous, deterministic
neuron network of interconnected neurons with graded re-
sponses has been analyzed in the previous two sections. It
functions as a CAM in precisely the same collective way as
did the original stochastic model of CAM. A set of memories

can be nonlocally stored in a matrix of synaptic (or resistive)
interconnections ih such a way that particular memories can
be reconstructed from a starting state'that gives partial infor-
mation about one of them.
The convergence of the neuronal state of the continuous,

deterministic model to its stable states (memories) is based
on the existence of an energy function that directs the flow in
state space. Such a function can be constructed in the con-
tinuous, deterministic model when T is symmetric, just as
was the case for the original stochastic model with two-state
neurons. Other interesting uses and interpretations of the be-
haviors of the original model based on the existence of an
underlying energy function will also hold for the continuous
("graded response") model (3).
A direct correspondence between the stable states of the

two models was shown. Ior steep response curves (high
gain) there is a 1:1 correspondence between the memories of
the two models. When the response is less steep (lower gain)
the continuous-response model can have fewer stable states
than the stochastic model with the same T matrix, but the
existing stable states will still correspond to particular stable
states of the stochastic model. This simple correspondence
is possible because of the quadratic form of the interaction
between different neurons in the'energy function. More
complicated energy functions, which have occasionally been
used in constraint satisfaction problems (13, 14), may have in
addition stable states within the interior of the domain of
state space in the continuous model which have no corre-
spondence within the discrete two-state model.
This analysis indicates that a real circuit of operational

amplifiers, capacitors, and resistors should be able to oper-
ate as a CAM, reconstructing the stable states that have been
designed into T. As long as T is symmetric and the amplifiers
are fast compared with the characteristic RC time of the in-
put network, the system will converge to stable states and
cannot oscillate or display chaotic behavior. While the symn-
metry of the network is essential to the mathematics, a prag-
matic view indicates that approximate symmetry will suf-
fice, as was experimentally shown in the stochastic model.
Equivalence of the gain curves and input capacitance of the
amplifiers is not needed. For high-gain systems, the stable
states of the real circuit will be exactly those predicted by
the stochastic model.
Neuronal and electromagnetic signals have finite propaga-

tion velocities. A neural circuit that is to operate in the mode
described must have propagation delays that are considera-
bly shorter than the RC or chemical integration time of the
network. The same must be true for the slowness of amplifi-
er response in the case of the electrical circuit.
The continuous model supplements, rather than replaces,

the original stochastic description. The important properties
of the original model are not due to its simplifications, but
come from the general structure lying behind the model. Be-
cause the original model is very efficient to simulate on a
digital computer, it will often be more practical to develop
ideas and simulations on that model even when use on bio-
logical neurons or analog circuits is intended. The interesting
collective properties transcend the 0-1 stochastic simplifica-
tions.
Neurons often communicate through action potentials.

The output of such neurons consists of a series of sharp
spikes having a mean frequency (when averaged over a short
time) that is described by the input-output relation of Fig.
la. In addition, the delivery of transmitter at a synapse is
quantized in vesicles. Thus Eq. 5 can be only an equation for
the behavior of a neural network neglecting the quantal noise
due to action potentials and the releases of discrete vesicles.
Because the system operates by moving downhill on an ener-

gy surface, the injection of a small amount of quantal noise
will not greatly change the minimum-seeking behavior.

Biophysics: Hopfield
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Eq; 5 has a generalization to include action potentials. Let
all neurons have the same gain curves g(u), input capaci-
tance C, input impedance-R, and maximum firing rate F. Let
g(u) have asymptotes 0 and 1. When a neuron has an input u,
it is presumed to produce action potentials VOS(t - taring) in
a stochastic fashion with a probability Fg(u) of producing an
action potential per unit time. This stochastic view preserves
the basic idea of the input signal being transformed into a
firing rate but does not allow precise timing of individual
action potentials. A synapse with strength Tij will deliver a
quantal charge VoTj to the input capacitance of neuron i
when neuron j produces an action potential. Let P(u1, u2,
Ui, ..., UN, t)du1, du2, ..., duN be the probability that input
potential 1 has the value ul,. . . The evolution of the state of
the network is described by

aP/at= > (1/RC)(a(uiP)/au,)

+ X Fg(uj)[-P + P(ul - TVVo/C,... ji- TUjVo/C,...)]. [i1]

If VO is small, the term in brackets can be expanded in a
Taylor series, yielding

aPlat= X (1/RC)(d(u1P)/d3u)

-E (aP/au,)(VoF/C) E Tij g(uj)

+ VOF/2C2 > g(uk)TikTik (a2P/auiauj). [16]
Qj,k

In the limit as VYO O0, F X such that FVo = constant,
the second derivative term can be omitted. This simplifica-
tion has the solutions that are identical to those of the contin-
tous, deterministic model, namely

p = H 6(ui -UP%
where ui(t) obeys Eq. 5.

In the model, stochastic noise from the action potentials
disappears in this limit and the continuous model of Eq. 5 is

recovered. The second derivative term in Eq. 16 produces
noise in the system in the same fashion that diffusion pro-
duces broadening in mobility-diffusion equations. These
equations permit the study of the effects of action potential
noise on the continuous, deterministic system. Questions
such as the duration of stability of nominal stable states of
the continuous, deterministic model Eq. 5 in the presence of
action potential noise should be directly answerable from
analysis or simulations of Eq. 15 or 16. Unfortunately the
steady-state solution of this problem is not equivalent to a
thermal distribution-while Eq. 15 is a master equation, it
does not have detailed balance even in the high-gain limit,
and the quantal noise is not characterized by a temperature.
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