If you are already familiar with Scheme or another dialect of LISP, you inay
wish to skim this chapter quickly, taking note of any unfamiliar terminology
(indicated by italics), and later refer to this chapter for specific information
on Scheme. We introduce only those features of Scheme that are used later
in this book.

1.1 Simple Expressions

Eofl - |

A statement is a programming langnage construct that is evaluated only for
its effect. Examples include assignment statements, input/output statements,
and control statements (while loops, if statements, etc.). Programs in most
languages are composed primarily of statements; such languages are said to
be statement oriented.

Programming language constructs that are evaluated to obtain values are
called ezpressions. Arithmetic expressions are the most common example.
Expressions may occur as parts of statements, as in the right-hand side of an
assignment statement. The data that may be returned as the values of expres-
sions constitute the ezpressed values of a programming language. Expressions
that are evaluated solely for their value, and not for any other effects of the
computation, are said to be functional,

Some f)rogramming languages, such as Scheme, are ezpression oriented:
their programs are constructed of definitions and expressions; there are no
statements. This section reviews basic techniques for constructing expressions
in Scheme. :

1.1.1 Literals, Procedure Calls, and Variables

The simplest form of expression is a literal (or constant), which always returns
the indicated value. For example, the result of evaluating the numeral 2 is
a value denoting the number two, which has the printed representation 2.
Other literals we shall have occasion to use include strings, such as "This is
a string.”, the boolean values #t (true) and #¢ (false), and characters, such
as #\a and #\space. We discuss these and other Scheme data types in the
next section.

The next simplest form of expression is a variable reference. The value of
a variable reference is the value currently associated with, or bound to, the
variable. A variable is said to denote the value of its binding. The data that
can be bound'to variables constitute the denoted values of a programming
language. Since all variable references in Scheme are also expressions, and

Tools for Symbolic Programming

the value of any expression may be bound to a variable, the denoted values
and the expressed values of Scheme are the same, at least in the absence of
variable assignment (section 4.5).

Variables are represented by identifiers. As in most languages, sequences of
letters and digits (not starting with a digit) may be used as identifiers, for ex-
ample: x, x3, foo, and longidentifier. Scheme is more permissive than most
languages in the use of special characters to form identifiers. For example, the
following are all identifiers: +, /, two+three, zero?, long.identifier, an-even-
longer-identifier. Some special characters, such as parentheses and spaces,
are not allowed in identifiers. Digits may generally be used in identifiers, e.g.
x3, but not as the first character. A few identifiers, such as define and if, are
reserved for use as keywords and should generally not be used as variables.

Scheme provides standard bindings for a number of variables. For example,
+ is bound to the addition procedure and zero? is bound to a boolean pro-
cedure, or predicate, that tests whether its argument is zero. Other standard
bindings will be introduced as they are needed. We call procedures that are
the values of standard bindings standard procedures. (See appendix I1.)

If a value is the binding of some variable, it is often convenient to refer to the
value by the name of the variable. However, the distinction between the name
of a variable and the value of its binding is very important. In this book we
observe this distinction by using different fonts. When referring to the variable
named “x" as a part of a program, we use the standard typewriter-style font:
x. When referring to the value of the variable x, we use an italic font: x. Thus
we use “zero?” instead of “the value of the variable zero?” when referring
to the numeric zero predicate.

Statement-oriented languages usually distinguish between functions, which
return values and are used in expressions, and procedures, which do not re-
turn values and are invoked by procedure call statements. Though function
calls and procedure calls often lock the same, syntactically they are distinct:
function calls are expressions, while procedure calls are statements. However,
since Scheme does not have statements, it does not make this distinction. In
fact, Scheme functions are usually called procedures, and Scheme function
calls are then referred to as procedure calls. We use the term “function” to
refer only to abstract mathematical functions.

The syntax of procedure calls in Scheme is not typical of other programming
languages. For example, a call to the procedure p with arguments 2 and 3
is written in Scheme as (p 2 3), instead of p(2,3). Parentheses surround the
entire procedure call, and its components are separated by spaces. We say
that the procedure p is applied to the arguments 2 and 3. Procet?ure (or
function) calls are sometimes referred to as applications or combinations.

1.1 Simple Expressions

The general syntax of procedure calls is

(operator operand, ... operand,))
The ellipsis “...” indicates possible repetition. There may in general be any
number of operands, or possibly none at all (n = 0). The operator and each
operand are components that are themselves expressions. They are called
subezpressions. The operator subexpression is evaluated to obtain a proce-
dure, while the operand subexpressions are evaluated to obtain the arguments
of the call before invoking the procedure. (Arguments are also referred to as
actual parameters, or simply parameters.) In Scheme, the order in which the
operator and operand subexpressions are evaluated is not specified, but in
some languages it is guaranteed to be left to right and in others it is always
right to left.

Any expression may be used as an operand in a procedure call. For example,
the procedure call

+x (p 23N

contains the operand (p 2 3), which is itself a procedure call. If the value of
(p 2 3) is 6 and x is 3, then (+ x (p 2 3)) is 9. (More precisely, “the value
of (+ x (p 2 3)) is 9.” Since a compound expression’s value is not likely to
be confused with the expression itself, in such cases we shall often omit the
phrase “the value of.”)

Operators may also be arbitrarily complex, as long as they return pro-
cedures. Thus if g were a procedure that when applied to 2 returned the
addition procedure, then

(g 2) 3 4)

would return 7. Procedures that return procedures are called higher-order
procedures, and expressions that return procedurss are called higher-order
expressions. They may be unfamiliar, but much will be accomplished with
them later.

1.1.2 Definitions, Programs, and the Read-Eval-Print Loop
Most operations can be expressed as procedure calls. For those that cannot,
a small number of special forms are required.

Consider the operation of binding the variable x to 3. We would like to
accomplish this by saying

Tools for Symbolic Programming

(define x 3)
The general definition syhta.x we use is
(define variable ezpression)

where variable and expression indicate an arbitrary variable and expression.
If this were a procedure call, with the variable define bound to some pro-
cedure, variable would be evaluated as an argument and its value passed to
the procedure. But veriahble may be unbound, in which case it cannot be
evaluated. Even if the variable were already bound, say x was bound to 7,
it still would not do to evaluate the variable. The special form define must
modify the binding of x, which would not be possible if it were simply passed
the value 7.

The solution is to declare that the above syntactic form is special—distinct
from a procedure call. Each special form is indicated by an identifier, in
this case define, that should not be used as a variable. These special form
identifiers are called keywords. Each special form has its own sequencing
rule, that is order of evaluation of subexpressions. In this case expression is
evaluated first, and then variable is bound to the value of eTpression.

A Scheme program consists of a sequence of definitions and expressions
that are executed in order by the Scheme system. These definitions and
expressions are said to be at top level. We next discuss a few features of
typical progr ing envir ts in which the Scheme language is used. It
should be borne in mind that these are not features of the language itself.

Programs may be stored in a file for convenient loading, or they may be
entered interactively. In the interactive mode, you enter a definition or ex-
pression, which is evaluated as soon as it is complete. When an expression is
entered, its value is printed. The system then prints an input prompt and the
cycle repeats. This repetitive action is often called the read-eval-print loop.
The transcript of 2 brief interactive session follows.

>3

3

> % ; evaluates to the standard multiplication procedure
#<Procedure>

> (x23)

[}

> (define x 3)

>x

1.1 Simple Ezpressions 5

3
> (+x (* 23))
k]

In this case the Scheme prompt is “>.” A semicolon “;” and anything following
it on the same line is ignored by Scheme so that comments may be inserted
in programs and transcripts. In general, procedures cannot be printed. Thus
the system simply prints some indication that a procedure has been returned.
In this book “#<Procedure>” is that indicator.

 Following a definition, many Scheme systems print the name of the variable
defined. As the transcript illustrates, however, we choose not to print anything
following a definition. This emphasizes that, in general, definitions do not have
values. In this respect they are like statements, but their use is more limited.
In this book define is used only at top level.

A final note about definitions: the value of a variable may be redefined.

That is, the value of an already defined variable may be changed with another
definition.

> (define x 2)
x

(define x (+ 1 x))
x

WYV VNV

Redefinition is allowed simply to make software development more convenient.
In Scheme the values of variables with standard bindings, such as +, can be
redefined. This is occasionally useful, for example, if you wish to keep track
of how many times + is invoked with a negative argument. Redefinition
of standard procedures, however, is risky; others may depend on them in
unexpected ways.

The interactive nature of Scheme aids program development. It is also
helpful in learning Scheme, because it makes it easy to try things out if you
wish to test your understanding or discover what will happen. Transcripts
of interactions with Scheme are also a convenient way of providing examples.
‘We use them frequently. You are urged to study our examples carefully to be
sure you understand why Scheme behaves as it does. Sometimes definitions
made in one transcript will be used in other transcripts that follow.

o Erercise 1.1.1
Start interacting with Scheme today! [J

Read-eval-print loops and redefinitions may not be appropriate in some
programming environments. For example, a Scheme implementation might
be designed to compile Scheme programs on one machine for execution at a
later time on other machines. In this case a read-eval-print loop would be
meaningless and redefinition would probably be undesirable. By making a
clear distinction between a programming language and programming envi-
ronments that support it, we treat the language itself as an abstraction. Such
language abstraction is important, for it allows the same language to be used
in many different environments.

1.1.3 Conditional Evaluation

‘We have seen that Scheme definitions cannot be expressed with an.application,
s0 a special form must be used. Conditional expressions are a second situation
in which a special form is required. The basic conditional expression in Scheme
has this syntax:

(if test-exp then-exp else-ezp)

The expression test-ezp is evaluated first. If its value is true, then-ezp is
evaluated, and its value is returned as the value of the entire if expression.
If the value of test-exzp is false, else-ezp is evaluated to obtain the value of the
if expression.

> (if #t 1 2)
1
> (zero? 5)
#f
(if (zero?) 1 (+ 1 2))

(define false #f)
(if (zero? 0)
(if false 1 2)

>

3

> (define true #t)
>

>

3)
2
> (if (if true false true) 2 3)
3

The special form if cannot be implemented as a procedure. For one thing,
only one of then-ezp or else-exp should be evaluated, and it would be inefficient
to evaluate both; but there is an even more compelling reason. An important

Tools for Symbolic Programming

1.1 Simple Ezpressions

use of conditionals is to prevent an expression from being evaluated when it
is unsafe to do so. For example, we might write

(if (zexo? a) 0 (/ x a))

to make sure that a is nonzero before dividing. In this situation, we say
the test guerds the division. Were if a procedure, its arguments would be
evaluated before being applied, so the division-by-zero we were trying to avoid
would be performed before it could be stopped.

Several other special forms will be introduced later as they are needed, but
define and if are enough to get us started.

1.2 Data Types

In this section we explore some of the data types in Scheme. Scheme imple-
mentations vary somewhat in the range of data types they support, and the
repertoire of operations on the data types also varies. We discuss only those
data types and operations that are required in this book. They should be
part of every implementation.

For each data type, we shall be concerned with three things:

1. The set of values of that type.
2. The procedures that operate on that type.

3. The representation of values of that type when they appear internally as
literals in programs or externally as characters that are read or printed.

For example, in mathematics the data type of sets consists of the sets them-
selves, the well-defined operations on these sets (such as union, intersection,
and set-difference), and the notation used to represent sets.

It is an error to pass a standard procedure a value that is not of the ex-
pected type. For example, it does not make sense to try to add a number to #t.
Type checking is required to detect such type errors. If these checks are per-
formed at run time when standard procedures are invoked, as is generally the
case for Scheme implementations, we have dynamic type checking. In fnany
languages, an analysis is performed at compile time to detect potential type
errors. This analysis, which must be based only on the text of the program
and not run-time values, is called static type checking. It has the advantage
of catching errors earlier but requires more complicated and restrictive rules
for determining if a program is correctly typed.

Tools for Symbolic Programming

1.2.1 Numbers, Booleans, Characters, Strings, and Symbols

We have already used two data types: number and boolean. Numbers may be
included in Scheme programs in the usual way. The operations on numbers
include the standard arithmetic operations, such as +, -, *, and /. The type
predicate number? takes an arbitrary value and returns true if its argument
is a number and false otherwise. The equality predicate for numbers is =.

The boolean data type has only two values, true and false, represented by #t
and #£, respectively. Booleans are used primarily in conditional expressions.
The type predicate boolean? tests an arbitrary value to see if it is a boolean,
boolean values may be compared for equality using the predicate eq?, and
the standard procedure not performs logical negation.

> (eq? (boolean? #f) (not #f))
#t

Characters that are visible when they print are represented as literals by
preceding them with #\, for example #\a and #\%. Some nonprinting characters
also have literal representations, such as #\space and #\newline. The character
type, equality, and order predicates are char?, char=?, and char<?, respec-
tively, and char->integer takes a character and returns an integer represen-
tation of the character. The predicates char-alphabetic?, char-numeric?,
and char-whitespace? are used to determine the class of a character. The
predicate char-whitespace? returns true when its argument is a space, re-
turn or linefeed character.

> (char? #\$)

#t

> (char=7? #\newline #\space)
#f

> (char<? #\a #\b)

#t

Strings are sequences of characters that are represented by surround-
ing the characters with double quote marks. The string type predicate is
string?. The procedure string-length takes a string and returns an
integer indicating the number of characters in the string. The procedure
string-append concatenates its arguments to form a new string. The pro-
cedures string->symbol, string->number, and string->list convert a
string into a symbol, number, and list of characters, respectively. (Symbols
and lists will be discussed soon.) The procedure string takes any number

1.2 Data Types - 9

hich must be characters, and returns a string of thes? :ha.t;
o i tive intege
ing- tring and a nonnega
rocedure string-ref takes a s . © useeer
fztel;s};a:};ij length of the string and returns the character mdrzx;umzered
'estseger Indexing is zero based, meaning that the characters a
ind .

of arguments,

starting with zero.

o i i |I)
> (define s "This is a. .
> (define ss (string-append s "longer string »

> (string? s)

#t)
> (string-length s)

10

> (string-length ss)

23

> (string-ref s 2)

#\i

> (string #\a #\b)

" a " :

> (string->symbol "abc")
abc

> (string->list s)
(#\T #\h #\i #\s #\space #\i #\s #\space #\a #\.)

ams, such as many in this book, fre-
s

ers are central to a number of ot.her
atabase applica-

Programs that process other progrﬁ
i i i Identi
ly manipulate identifiers. ntifiers '
g::i‘st t’)f programming, such as artificial intelligence a.n't:l dogmms oppller
i i important role in most pr)
o, e e with amjla.nu:;f.llating numbers. When identifiers are

they are called symbols. The manipulation of
oviding a distinct data (;y-p‘e f‘or t}}em.h
tri must be surrounded with quote marks to .dlscmgmslz3 dt Zx)r:
e rmgfs rogram, symbolic literals must be specially mar! ’I,‘hus
o t}}e r:t ; v:n?ld g;e i;xdisting\ﬁshable from variable referencl&ﬁ.
:11;;1:;5 :pec?a}.'l form is needed to introduce symbols into programs:

not primarily concerned with
treated as values in Scheme,
symbols is greatly facilitated by pr

(quote datum)

ard external (printed) rep-

ther stand: wted)
Hore dafum may be a Fymbal or 207 © d literal expression is the

t
resentation for Scheme data. The value of a quote

associated data value.

Tools for Symbolic Programming

> (define x 3)
>x

3

> (quote x)

x

> 99

99

> (quote 99)
99

Such expressions are used so often that there is an abbreviation for them. The
form (quote datum) may also be written

! datum

utilizing the single-quote character. Most languages have quoting meclhamsxzxs

of some sort to avoid confusion between literals a'.nd other program el smen Sd

The only literals that are “self-quoting,” mefmmg that they Tnay e us:z1 !

directly as expressions without being enclosed in a quote expression, are nw
ings, and characters.

be?;]g‘;;’::;“ Z})Ztr;tiisr:s on smbols are the symbol type predicate, symbol?,

and the predicate for testing equality of two symboals, eq?,

> (define x 3)

> (number? x)

#t

> (symbol? x)

#f

> (number? ’x)

#1

> (symbol? ’x}

#t

> (eq? ’x ’x)

#

> (eq? ’x ’y)

#f

> (define y ’apple)
>y

apple

> (eq? y (guote apple))
#t

> (eq? ¥y ’Y)

#1

11
1.2 Data Types

1.2.2 Lists

12

A list is an ordered sequence of elements, which may be of arbitrary types.
Lists are a flexible way of combining multiple values into a single compound
object. Scheme provides convenient facilities for- creating and manipulating
lists. These facilities, along with most other Scheme data types, are derived
from the much older language LISP. (The name stands for LISt Processing.)

A list is represented by surrounding representations of its elements with a
pair of parentheses. For example, (a 3 #t) represents a list consisting of three

elements: the symbol a, the number three, and the value true. Here are a few
more lists

- guments. The first may be any Scheme value, an

The second important list-building procedure, cons, always takes two ar-

d the second must (for the
moment) be a list. If its first argument is the value v and its second argument
is the list (vp vy ... Un—1), then cons returns the list (v vy v,
The returned list is always one longer than the s

tion 1.2.3.) Study the following examples caref

fully; they illustrate several
important features of cons.

> (cons ’a (c d))

(acaq)
(0] the empty list > (List ’a ’(c 4))
(a) a list of length 1 (a (¢ d))
(b c d)) a list of length 1 that contains a list of length 3 > (cons ’(a b) *(c 4))
((ab) ca)
Just as quote is necessary to distinguish between symbolic literals and vari- > (cons *() *(c d))
ables, it is also necessary to avoid confusing literal lists with procedure calls (O ca
or special forms. The expression (quote (a b c)) yields the list (a b ¢) as > (cons a »())
its value. However, the expression (a b c) is a procedure call whose value @
depends the val f the variables a, b, and c; or perhaps it is a special > leoma 2(ab) 2 0)
P on the values o a, b, ; or perhap. jol (Ca b))

form where a is a keyword.

There are several standard procedures that build new lists. Here we consider
the most important ones, 1ist and cons. The standard procedure list
may be applied to any number of arguments. It forms a list of their values.
(Most procedures take a fixed number of arguments, but 1list, string and
string-append are exceptions.)

> (list 1 2 3)

123

> (define x 3)

> (define y ’apple)

> (list x y)

(3 apple)

> (define list-1 ’())

> (define list~2 ’(a))
> (define 1ist-3 ’((b)))
> (list list~1 list-2 1ist-3 *(((e))))
(O @ () Wenn
> (list)

O

Tools for Symbolic Programming

> (define y ’apple)

> (cons y list-2)

(apple a)

> (define 1ist-4 (cons list-1 list~2))
> list-4

G a)

> (cons list-4 list-3)

O a) @)

Observe in these examples that if the first element to cons is a list, that
list becomes an element of the value returned by cons. To add all elements

of a list to the front of another list (in the same order), the procedure append
should be used.

> (append *(a b) ’(c a))

(abcad)

> (append *() *(c d))
(c q)

> (append *(a b) ’())
{(a b)

1.2 Data Types B

1y

Compare these results with those obtained by passing the same arguments to
cons. -
The simplest way to divide a list is between the first element and the rest
of the list. For historical reasons, the first element of a list is known as its car
and the rest of the list is known as its cdr. The standard procedures car and
‘cdr select these components of a list. Thus if { is the list (v v ... VUn1)y
then (car) = vy and (cdr D =(v1 ... va_y). It is an error to call car or
cdr with the empty list.

> (car "(a b c))

a

> (cdr ’(a b ¢))

b)

> (car (cdr "(a b ¢)))
b

> (cdr ’(a))

O

Clearly car and cdr undo what cons does. The exact relationship between
car, cdr, and cons is expressed by the equations

(car (cons v 1)) =v

(cdr (cons v 1)) =1

where v is any value, ! is any list, and = indicates identical values.

Nested calls to car and cdr are so common that Scheme provides an assort-
ment of procedures that take care of the more frequent cases. For example,
the procedures cadr and caddr are defined such that

(cadr i) = (car (cdr 1))
(caddrl) = (car (cdr (cdr)

The sequence of as and ds surrounded by ¢ and r in the procedure name
determines the cars and cars and their ordering. The rightmost a/d (car/cdr)
is performed first, just as the innermost procedure call is done first.

> (cadr ’(a b ¢))
b

> {eddr ’(a b ¢))
(c)

> (caddr '(a b ¢))
<

Tools for Symbolic Programming

16

(2] [+—{<]/]

EZ]

® ®

Figure 1.2.1 Box diagrams

initialized to the values of its first and second arguments, respectively. The
procedures car and cdr access the two fields. This explains the behavior
introduced in the last section. The type predicate for recognizing pairs is
pair?.

The structure of valies built from pairs is conveniently illustrated by dia-
grams in which pairs are represented by boxes. Each of these boxes has a left
and a right half, representing the car and cdr fields, respectively. Each half
contains a pointer to another box if the value of the corresponding field is
another pair. If the field value is the empty list, this is represented by a slash
through the box. Finally, if the field value is a symbol, number, or boolean,
its printed representation is written in the corresponding half of the box. The
list (a (b ¢) 4) is represented in figure 1.2.1 (a).

If a list has length 7, the result of taking the cdr of the list n times must
be the empty list. Thus a list is represented by either the empty.list or a
chain of pairs, linked by their cdr fields, with the empty list in the cdr field
of the last pair of the chain. A cdr-linked chain of cons cells that does not
end in the empty list is called an improper list, even though it is not a list
at all. Figure 1.2.1 (b) illustrates such a data structure. We can denote such
data structures in a linear format by writing (a . d) for a pair whose car is
a and whose cdr is d. (Hence the term dotted pair.) The data structures in
figure 1.2.1 (a) and (b) might be written as

@. (. .O0N.&@.omn

and

Q. 0. e. 6.9

Tools for Symbolic Programming

¢~ Empty lists are always represented by the same ob. ject, called the empty list.
“{For historical reasons, it is sometimes called the null object.) The predicate

null? tests if its argument is the empty list.
> (aull? (),
#t
> (define list-2 (list ’a))
> list-2
(@)
> (null? list-2)
#f
> (null? (cdr list-2))
#t

o Ezercise 1.2.1
Fill in the blank lines of the following transcript.

> (define x *(a b ((3) ¢) 4))
> (car (cdr x))

> (caddr x)

> (cdaddr x)

> (char? (car ’(#\a #\b)))

> (cons ’x x)

> (cons (list 1 2) (coms 3 (D))

> (cons (list) (list 1 (cons 2 O

1.2.3 Pairs

Most of the time it is desirable to view lists abstractly as we have just done,
however, it is sometimes necessary to understand how lists are constructed.
In Scheme, nonempty lists are represented as pairs. A pair (sometimes
called a dotted pair or cons cell) is a structure with two fields, called car
and cdr. The procedure cons creates a new pair with the car and cdr fields

1.2 Data Types

15

respectively. Either of these might appear quoted in a Scheme program. This
dot notation may be intermixed with conventional list notation, so the second
structure might also be written

(1) 23 . g

Dot notation is required only when writing improper lists.

The predicate €q? may be used to compare pairs as well as symbols. In fact,
eq? may be used to test if any two objects are the same object. The behavior
of eq? on symbols, booleans, characters, and the empty list is straightforward:
if they have the same written Trepresentation, they are the same object. This

on numbers is implementation dependent. If €g? is presented with two pairs
(or strings), it returns true if and only if they are the same pair (or string).
Since cons creates a new pair every time it is called, eq? must be used with
caution on lists,

> (define a (cons 3 0N
> (define b (cons 3 ’()))
>a

3)

>b

3

> (eq? a a)

#t

> (eq? a b)

#E

> (eq? (cons 1 2) (cons 1 2))
#f

> (eq? " () *())

#t

In this example a and b are different pairs, even though they both print as
(3), so they are not “eg to each other.” However, every reference to the
variable a returns the same Pair, o (eq? a a) is true.

Pairs may be shared. That is, the same Ppair may be referred to by different
variable bindings and Ppair fields.)

>b

3)

> (define ¢ b)
> (eq? b ¢)

1.2 Data Types 17

18

Figure 1.2.2 Box diagram with sharing

#t

> (define d (coms 2 ¢))
> (define e (cons 2 ¢))
>d

(2 3)

>e

(2 3)

> (eq? d)

#£

> (eq? (cdr d) (cdr e))
#t

Here b, c, the cdr of d, and the cdr of e are all the same pair, though d and
e are different pairs. Standard printed notation does not represent sharing,
but box diagrams do, as figure 1.2.2 illustrates. The sharing of literals is not

specified; for example, (eq? *(3) ’(3)) could be true or false.

There are procedures for assigning new values to the car and cdr fields of an
existing pair, which will be discussed in section 4.5. When a pair is modified
by one of these procedures, the change is noted in all data structures that

share the pair.
The only other way to detect sharing of pairs is by using eq?.

® Ezercise 1.2.2
Fill in the blank lines of the following transcript.

> (define x1 ’(a b))
> (define x2 ’(a))

Tools for Symbolic Programming

> (define x3 (coms xi x2))
> xl

> (eq? x3 (cons x1 x2))

> (eq? (cdr x3) x2)

> (eq? (car x1) (car x2))

> (cons (cons ’a ’b) (coms ’¢c ’()))

> (cons 1 (cons 2 3))

1.2.4 Vectors

So far we have seen one means for building compound data objects in Scheme:
the cons cell. These cells may be used to construct lists of arbitrary length,
Lists are a derived data type because they are built using primitive data types:
the cons cell and the empty list. The advantage of lists is the ease with which
new lists may be formed by adding elements to the front of existing lists.
However, lists do not provide names for all their elements or random access to
them. Compositions of invocations of car and cdr, also called car/cdr chains,
are an awkward way of referring to the first few list elements. It is possible to
access list elements via an index number, but with conventional lists access
time increases linearly with the index, since to reach a given element it is
necessary to traverse the cdr pointers of all the elements that appear earlier
in the list.

Neither cons cells nor lists correspond to the two ways to build compound
data objects that are most commonly provided by programming languages:
records and arrays. Record elements are selected by field names. Records
are also heterogeneous, meaning that their elements may differ in their type.
Arrays, on the other hand, are homogeneous, in the sense that each of their
components must be of the same type, and array components are selected by
an index number (or multiple index numbers in the case of multidimensional
arrays). Both records and arrays provide random access to their components;
that is, each component may be accessed in the same amount of time.

Scheme does not provide arrays or records directly. Instead it supplies
wvectors, which may be used in place of arrays and records. Vectors provide

random access via index numbers (like arrays) and may be heterogeneous (like
records).

The standard procedure vector takes an arbitrary number of arguments,
such as list and string, and constructs a vector whose elements contain
the argument values. Vectors are written like lists, but with a hash (#) im-
mediately preceding the left parenthesis. By convention, vectors must also be
quoted when they appear in programs as literals.

> (define vi (vector 1 2 (+ 1 2)))

> vl

#(123)
"> (define v2 (quote #(a b))

> v2

#(a b)

> (vector vi v2)

#(#(1 2 3) #(a b))

> '#(#(a nested vector) (and a list) within a quoted vector)

#(#(a nested vector) (and a list) within a quoted vector)

The number of elements in a vector is its length, which may be determined
with the standard procedure vector-length. The type predicate for vectors
is vector?. The selector vector-ref takes a vector and a zero-based index
and returns the value of the element indicated by the index. Thus the indices
for a given vector are natural numbers in the range from zero through one
less than the length of the vector. There are procedures, vector->1ist and
list->vector, for transforming one compound data type into the other.

> (define v3 ’#(first second last))

> (vector? v3)

#t

> (vector-ref v3 0)

first

> (vector-length v3)

3

> (vector-ref v3 (-~ (vector-length v3) 1))
last

> (vector-ref ’#(another #((heterogeneous) "vector")) 1)
#((heterogeneous) "vector")

> (vector->list v3)

(first second last)

Tools for Symbolic Programming

Of course it is an error to pass vector-ref an index number that is not a

valid index for the given vector. -
We use a data structure called a cell, a “one-element” vector. In addition

to the procedure make-cell, which constructs a cell, there is a procefiure for
_ref and one that determines if its argument is a cell,

in chapter 5 for characterizing languages with side
er-passing mechanisms.

referencing a cell, cell
ce11?. Cells will be useful
effects and in chapter 6 for describing various 11)‘aramet

ise 1.3.2 for an implementation of cells.)
SeeT:e;::)scedure eq? may again be used to test wlfether two objects are the
An assignment operation for changing the value of a vec‘tor
section 4.5. As was the case with pairs, the sharing
q? or assignment.

same vector.
element is introduced in .
of vectors in data structures may be revealed using e

o Bzercise 1.2.3))
Till in the blank lines of the following transeript

> (definme v1 (vector (coms 1 2) 3))
> (define v2 (vector ’a v1)}
> v2

> (define v3 *#(a #((1 . 2) 3))
‘> (eq? vi v3)

> (eq? vi (vector-ref v2 1))

> (eq? (vector-ref vi 0)
(vector-ref (vector-ref v2 1) 0))

I

1.3 Procedures

o7 is a Scheme type predicate for procedures.

ight expect, procedur :
As you mie ; ; his as well as demonstrating that proce-

The following transcript illustrates ¢
dures can be treated as values.

> (procedure? ’car)
#f
> (procedure? car)
#t

1.8 Procedures

22

24

> (procedure? (car (list cdr)))
#t

The first two examples distinguish between the symbol car and the procedure
car. The second and third illustrate passing a procedure as an argument to
another procedure. In the third, the procedure cdr is also stored in a data
structure and returned as the value of another procedure, car. Here are some

more complicated examples

> (if (procedure? 3) car cdr}
#<Procedure>
> ((if (procedure? 3) car cdr) ’(x y z))
(y 2
> (((if (procedure? procedure?) cdr car)
{cons car cdr))-
' (car in the car))
(in the car)
> (((if (procedure? procedure?) car cdr)
(cons car cdr))
(xy 2))
X

Procedures are normally called using the application form, as in (+ 1 2),
but sometimes we need to call a procedure with argument values that have
already been assembled into a list. The standard procedure apply is provided
for this purpose. It takes a procedure and a list and returns the result of calling
the procedure with the values given in the list.

(apply + ’(1 2))

(define abc '(a b ¢))

(apply coms (cdr abc))

M . ¢

> (apply apply (list procedure? (list apply)))
#c

>
3
>
>

1.3.1 lambda

We have seen that Scheme supplies a number of standard procedures. It is
also possible for the user to create new procedures, which may not be bound
to variables. The special form for creating new procedures is lambda. Its most

common syntax is

Tools for Symbolic Programming

(lambda formals body)

Here formals is a (possibly empty) list of variables, and body is any expression
The listed variables are said to be formal parameters, or bound variables, o;
the procedure. In many languages, type information must be provided ’for
forma} parameters. However, Scheme automatically keeps track of types at
run time, 5o type declarations are not required. (This is more flexible and
simplifies code, but has the disadvantage that type errors are not detected
until run time, increasing run-time overhead. We shall have more to say about
types in chapter 3.) When the procedure is called, the formal parameters (if
any) are first bound to (associated with) the arguments, and ther the bod:
is evaluated. Within the body, the argument values may be obtained by
variables that correspond to the formal parameters. Lambda bindings are no)t'
accessible outside the body of the procedure: they are said to be local to the
procedure’s body.

For example, a procedure that adds two to its argument may be created by
evaluating the expression:

(lambda (n) (+ n 2))

This expression does not give the procedure a name. Naming is accomplished
by another expression, such as a define expression, if desired, however, a
procedure may be applied immediately, passed as an argument, or stored, in
a data structure without ever being named.

> ((lambda (n) (+ n 2)) 4)
s .
> (list (lambda (o) (+ n 2)) 6)
(#<Procedure> 6)
> (define add2 (lambda (n) (+ n 2)))
> (add2 6)
8
> (define select
(lambda (b 1st)
(if b
(car 1st)
(cadr 1st))))
> (select #f ’(a b))
b
> ((select #t (list cdr car))
*(a b c))
(b <)

1.3 Procedures 29

Procedures without names, which are not the binding of a variable, are
said to be anonymous. In most other languages, procedures are never anony-
mous: they may be created only via declarations that name them. (Of course
anonymity is relative to context: if an anonymous procedure is bound to a
parameter via procedure call, it is not anonymous in the context of the called
procedure.)

Anonymous procedures are often used as arguments. We illustrate this
using the procedures map and andmap, which generally take two arguments: a
procedure and a list. The list may be of any length, and the procedure must
take one argument. The procedure map builds a new list whose elements
are obtained by calling the procedure with the elements of the original list.
The procedure andmap applies the procedure to each element of the list and
returns true if all are true. Otherwise it returns false.

> (map (lambda () (+ n 2)) ’(1 23 4 5))

(34567
> (define add2

(lambda (n)

(+ n 2)))

> (map add2 ’(1 2 3 4 5))
(34567
> (andmap number? ’(1 2 3 4 5))
#t

> (map null? (&) OO O (BN

(#f #t #t #1)

> (andmap null? *((a) O O (3)))

#f

> {(map car *((a.b) (c &) (e £)))

(a c e)

> (map list '(a b c Q)

((a) () (e} @)

> (map (lambda (£) (f '(a b c d)))
(1ist car cdr cadr cddr caddr))

(a (bcdb(cd e

1.3.2 First-Class Procedures
A value is said to be first class if it may be passed to and returned from
procedures and stored in data structures. In Scheme, all values are first class,

including procedures. In other languages, simple values such as numbers
are first class, compound values such as records and arrays are sometimes

Tools for Symbolic Programming

first class, and procedures are almost never first class. Though it is usually
possible to pass procedures as arguments, it is often impossible to return them
as values or store them in data structures. (See chapter 10 for a discussion
of the implementation of such languages.) First class procedures contribute
greatly to the expressive power of a language.

For an example of a procedure that takes procedural arguments and re-
turns a procedural result, consider the problem of defining a procedure that
performs functional composition. Assume that f and g are two functions of
one argument such that Range(g) C Domain(f). Then the composition of f
and g, fog, is defined by this equation:

(fo9)(z) = f(g(=))-

The assumption about the range of g and the domain of f ensures thafevery
possible result from g is a possible argument to f. It is straightforward to
define composition in Scheme.

> (define compose
(lambda (f g)
(lambda (x)

(£ (g NN

> (define add4 (compose add2 add2))

> (add4 5)

9

> ((compose car cdr) ’(a b ¢ d))

b .

> ((compose list (compose cdr cdr))
'(abcd)

({e d))

o Exercise 1.5.1
‘What is unusual about the following expression?

((lambda (x)
(list x (list (quote quote) x)))
(quote (lambda (x)
(list x (list (quote quote) x)))))

Try to figure out what it does without typing it into a Scheme system. Can
similar behavior be achieved without using 1ist? []

1.3 Procedures 25

26

28

This transformation is ; '
curried versions of the addition and cons procedures, respectively. Of course

o Exercise 1.3.2
Here is an implementation of cells.

(define cell-tag "cell")

(define make-cell
(lambda (x)
{vector cell-tag x)))

(define cell?
(lambda (x)
(if (vector? x)
(if (= (vector-lemgth x) 2)
(eq? (vector-ref x 0) cell-tag)
#1)
#1£)))

(define cell-ref
(lambda (x)
(if (cell? x)
{vector-ref x'1)
(error "Invalid argument to cell-ref:" x))))

Fill in the values of the foliowing transcript.

> (define c¢ (make-cell 5))
>c

> (cell? ¢)
> (cell-ref c)

]

o Exercise 1.3.3
Consider two or three other languages you know or for which you can find doc-
umentation. What restrictions, if any, are imposed on procedures that keep
them from being first class? Is it possible to create anonymous procedures? [

Here is an example of a procedure that takes a numeric value and returns
a procedure.

Tools for Symbolic Programming

(define £
(lambda (x)
(lambda (y)
+xN)

‘When f is passed a number z it returns a procedure that takes a number and
adds x to it.

> (define new-add2 (£ 2))
> (new-add2 4)
6

Here new-add2 has the same behavior as the add2 procedure defined earlier.
So what is the point of defining £?7 If a computation requires generating many
of these add-n procedures for different values of n, or if the values of n are
unknown at the time the program is written, then a procedure like f is called
for.

> (define add3 (£ (+ 1 2)))
> (add3 §)
8
> ((£ 5) 6)
11
> (define g
(lambda (a)
(lambda (d)
(cons a d))))

> ((g *a) " (b <))
(abc)
> (map (g ’a) *((b o) (1 220
((abec) (a1l 2)

Having functions of more than one argument is certainly convenient, but it is
not absolutely necessary. Using the technique just illustrated, any procedure
p of n > 2 arguments can always be transformed into a procedure p’ of one
argument that returns a procedure of » — 1 arguments such that

(P z1) T2 ... Tn) = (P1 ... Tp)

By repeating this transformation n — 1 times, we obtain a procedure p” such
that
(.. (" z1)z2) ... Zn) = (Pz1T2 ... TN)

known as currying. The procedures £ and g above are

if an existing procedure is to be replaced by a curried version, all calls to the

procedure must be changed.
A curried version of a procedure normally takes the first argument first, but
this is not always what is desired. The following example illustrates the use

of a “reverse-curried” version of cons.

> (define h
(lambda (d)
(lambda (a)
(cons a d))))

> (b <)) 'a)
(abc)
> (map (& (b) ’(a12)
((abc) be) (2bc))

o Ezercise 1.3.4

t takes a procedure of two arguments and re-

Write a procedure curry2 thal "
turns a curried version of the procedure that takes the first argument an

returns a procedure that takes the second argument. For example,

> ((Ceurry2 +) 1) 2)

3

> (define consa ((curry2 coms) ’a))
> (consa ’(b))

(a)

U

o Exercise 1.3.5

Write a curried version of compose. Can you think of a use for it? [

o Ezercise 1.3.6 . ‘
A language could be designed like ML, so that if a procedure is passed fewer
it simply returns a procedure that takes the rest

ents than it expects
argum post®, » curried. What are

of the arguments. Thus procedures are “automatically
the advantages and disadvantages of this feature?

Tools for Symbolic Programming

1.3.3 Variable Arity Procedures

The arity of a procedure is the number of arguments that it takes. Most
procedures, including those that result from evaluating lambda expressions
of the form introduced so far, have fixed arity. An error message results
if a fixed arity procedure is invoked with the wrong number of arguments.
Examples of procedures that can take a variable number of arguments are the
standard procedures 1ist, vector, and string. It is occasionally necessary
to define new procedures of variable arity. This is accomplished with a lambda
expression of the form

(lambda formal body)

where formal is a single variable. When the resulting procedure is invoked,
this variable is bound to a list of the argument values. The simplest example
is (lambda x x), which is equivalent to 1ist. A more interesting example is
the following procedure, which may be invoked with two or more arguments,
in which case it behaves like +, or with one argument, in which case it behaves
like a curried +.

> (define plus
(lambda x
(if (null? (edr x))
(lambda (y) (+ (car x) y))
(apply + x))))

> (plus 1 2)
> ({plus 1) 2)
3

o Fzercise 1.3.7
Define a version of compose that takes as arguments either two or three pro-
cedures (of one argument) and composes them. The composition of three
procedures is specified by this equation:

(compose £ g h) => (compose £ (compose g h))

1.3 Procedures 29

L

Syntactic Abstraction and Data
Abstraction

In this chapter we present several special forms that are precisely equivalent
to syntactic patterns that are expressible in terms of existing forms. They
are examples of syntactic abstraction, since they abstract common syntactic
patterns. They are informally known as syntactic sugar, since they make
a language more pleasant to use but add nothing of substance. First we
introduce syntactic abstractions that are useful for creating local bindings
and performing multi-way branches. We then present a record facility for
Scheme that may be implemented via two more syntactic abstractions.

Our implementation of records hides details of how records are imple-
mented. This provides an example of data abstraction and leads to a general
discussion of abstract data types. These data types allow the development
of programs that are independent of how their data is represented. One of
the benefits of such representation independence is that data that is first rep-
resented, for simplicity, as first-class procedures may later be represented,
for efficiency, as records or other more specialized data representations. The
last section illustrates such transformations of data representation, which are
extensively used throughout the rest of this book.

3.1 Local Binding

So far we have seen two ways to create bindings in Scheme. Definitions, as
we use them, create top-level bindings whose region is. the entire program.
Lambda expressions, which yield procedures, create local bindings for their
parameters when invoked. The region of these bindings is restricted to the
body of the procedure. There is frequently a need to create local bindings for
immediate use, rather than for use when a procedure is invoked. This section

introduces two special forms for creating such bindings.

3.1.1 1iet

Cons_ider the if expression of the first subst definition in section 2.2.2.

(define subst
(lambda (new old slst)

(if (symbol? (car slst))
(if (eq? (car slst) old)
(cons new (subst new old (cdr slst)))
(cons (car slst) (subst new old (edr slst))))
(cons (subst new old (car sist))
(subst new old (cdr sist))))
D)

The expression (subst new old (cdr slst)) appears three times, and its value
is always needed if s1st is not null. It would be clearer if this value could be
computed and bound to a variable, say cdr-resuit, before the expression is
evaluated and then simply referred to by this name. Since this binding has
no significance outside of this expression, the binding should be local to the
expression. One way to accomplish this is to use a lambda expression whose

body is the expression and invoke the resulting procedure immediately.

((lambda (cdr-result)
(if (symbol? (car sist))
{if (eq? (car slst) old)
(cons new cdr-result)
(cons (car slst) cdr-result))
(cons (subst new old (car slst))
cdr-result)))
(subst new old (cdr slst)))

We treat (car slst) similarly, since it appears four times.

((lambda (car-value cdr-result)
(if (symbol? car-value)
(if (eq? car-value old)
(cons new cdr-result)
(cons car-value cdr-result))
(cons (subst new old car-value)
cdr-result)))
(car slst)
(subst new old (cdr sist)))

Syntactic Abstraction and Data Abstraction

The original expression has now been simplified considerably. Furthermore, in
the original expression (car slst) is evaluated two or three times (depending
on which if branches are taken), whereas in the version above it is evaluated
only once. This illustrates another advantage of local bindings: they can re-
duce the amount of computation. In our example, the amount of computation
involved in taking the car of s1st is small enough that this is of little signifi-
cance, however, sometimes expressions that appear repeatedly involve a great
deal of computation.

You probably sense the problem with the approach taken above: it is diffi-
cult for the eye to match the formal parameters with their associated operands.
Looking at the expression above, it is not obvious that cdr-result is the value
of (subst new old (cdr slst)). The let special form is provided to solve this
problem. Using let, the definition of subst becomes

(define subst
(lambda (new old slst)
(if (null? slst)
0
(let ((car-value (car slst))
(cdr-result (subst new old (cdr slst))))
(if (symbol? car-value)
(if (eq? car-value old)
(cons new cdr-result)
(cons car-value cdr-result))
(cons (subst new old car-value)
cdr-result))))))

In general, let expressions have the form

(et ((vary ezpy)

Eu’ar,. exrpn))

body)
The region associated with the declarations of vary,. .., var, is body. Each of
the expressions expi,...,erp, is evaluated, the variables vary,...,var, are

bound to their values, and finally the expression body is evaluated and its
value is returned. Thus the above form is precisely equivalent to

((lambda (var: ... varn) body)
exTP] ... ETPn)

3.1 Local Binding 69 70

In fact, when some Scheme compilers see a let expression, they immediately
translate it into this form. (They also typically implement let or the equiva-
lent form efficiently by avoiding the creation of a procedure, as in figure 5.3.2.)

Sometimes when two local bindings are required, the value of one of them
depends on the value of the other. In this case nested let expressions must
be used. For example,

(let ((x 3))
(let ((y (+ x)0
(* x 7))

is not equivalent to

(let ((x 3)
{y (+x D))
(x x y))

since in the latter expression the region of the new declaration of x is the
body of the let expression and does not include the expression (+ x 4) used
to define y. The let expression is equivalent to this lambda expression:

(QQambda (x y) (* x y))
3
(+ x 4»

It is clear that (+ x 4) is not in the scope of the formal parameter x. Nested
let expressions may also be used to create bindings for the same variable:

(let ((z 3))
(et ((x (* x x)))
(+x %))

Here the inner let creates a hole in the scope of the outer binding of x, but the
hole does not include the expression (+ x x). Thus the expression has value
18. If this is not clear, try replacing each let expression by the equivalent
application of a procedure created by lambda.

e Fzercise 8.1.1
‘What are the values of the following two expressions?

Syntactic Abstraction and Data Abstraction

(let ((x B) (y 6) (= 71
(let ((x 13) (y (+ x ¥)) (z x»)
- ¢xz)y))

(let ((x 5) (y 6) (= T
(+ (let ((z (+x 2))) (xz (+z 1)
(let ((z (* x y))) (+z (*xz (- 2 yINN
0

o Exercise 3.1.2
Write let->application, which takes a let expression (represented as a list)
and returns the equivalent expression, also represented as a list: an application
of a procedure created by a lambda expression. Your solution should not
change the body of the let expression.

> (let->application ’(let ({(x 4} (y 3))
(let ((z 5))
G+ x (+y 20
((lambda (x y)
(let ({z 5))
(+x (+yz))
43)

0

3.1.2 letrec

Frequently it is desirable to bind procedures locally. For example, in
section 2.2 we defined the procedure partial-vector-sum for use by
vector-sum. If a procedure is not likely to be of use in other contexts, it
is good practice to restrict the scope of its binding to the section of code
where it is needed. Thus within the definition of vector-sum we would like
to use something like

(let ((partial-vector-sum
(lambda (von n)
(if (zero? n)
0
(+ (vector-ref von (- n 1))
(partial-vector-sum von (- mn 1))))))})
(partial-vector-sum von (vector-length von)))

8.1 Local Binding 71

72

but this does not work. Recall that the region of a let binding is restricted
to the body of the let. The difficulty is that in partial-vector-sum the
2 1)) is not within the scope of

recursive call (partial-vector-sum von (-
difficulty arises whenever

the binding for partial-vector-sum. The same
there is a need to bind a recursive procedure locally.) -
Scheme provides the special form letrec to make local recursive definitions.

The general form follows:
(letrec ((vari ezpi)

'(;J.ary. ezpn))
body)

This is similar to 1et, except that the region of the declarations vary,...,v0T s
is the entire letrec expression, inclnding the expressions ezpi, - - -, €TPn. Thus

expy, .- ., €TPn MAY define mutually recursive procedures. In most uses of

letrec, €xpi,...,ETPn 8T lambda expressions, but this is not required. It

is required, however, that no reference be made to vary, ..., V07 during the
evaluation of €xp1, .. - ,€ZPn. FOT example,

(letrec ({(x 3)
(y (+ x 1))

k2]
is illegal. This restriction is necessary because the bindings of vary,...,v0Tn

cannot have values until exps, ..., €TPn 4
is easily met if these are lambda expressions, because references to va.nab}es
within the body of a lambda expression are evaluated only when the resulting
procedure is invoked, not when the lambda expression is evaluated. Thus

(letrec ({x 3)
(y (ambda O (+ x 1)

[$2)]

is legal and evaluates to 4.

Using letrec, vector-sum may
need to pass von to partial-vector-sum, sit
reference to von i
simple example of mutual rec

integers.

There are several advantages to using letrec, or let for procedures, rathgr

than using define:

Syntactic Abstraction and Data Abstraction

Figure 3.1.1 The procedure vector-sum using letrec

(define vector—sum
(lambda (von)
(letrec ((partial-vector-sum
(lambda (n)
(if (zero? mn)
0
(+ (vector-ref von (- n 1))
(partial-vector-sum (- n 1)))))))
(partial-vector-sum (vector-length von)))))

Figure 3.1.2 Example of mutual recursion

(letrec ((even? (lambda (n)
(if (zero? n)
#t
(0dd? (- n 1))
(0dd? (Qambda (n)
(if (zero? n)
#f
(even? (= n 1I1))))

(even? 3))

—

. When studying a procedure call, finding a local definition is easier than
finding a global one.

D

. The code that could be affected by a modification to a procedure is limited
to the scope of a local declaration.

[

. Frequently the number of arguments required is reduced when a local dec-
laration is used, because some bindings are provided by the context (as
with von in the vector-sum example above).

4. By reducing the number of global definitions, the chance of a conflict occur-

ring because the same name is used for more than one global definition is

reduced. In large programs to which many people contribute code, this last

point is very important. We shall have more to say about this in chapter 7.

We have seen that Scheme allows any expression to contain local definitions.
Some languages allow local procedure declarations only in certain contexts,
such as at the head of procedure declarations or even larger units such as files.

3.1 Local Binding 73

s Erercise 5.1.3
Rewrite subst using letrec. [

o Ezercise 8.1.4
The special forms let and letrec are both binding forms. Extend the defini-
tions of occurs free and occurs bound to accommodate let and letrec expres-
sions. Augment your programs free-vars and bound-vars to take your new
rules into account. [J

o Ezercise 3.1.5
Extend the language of exercise 2.3.10 to include let and letrec expressions.
Adapt your program lexical-address so that it recognizes letrec expres-
sions. [}

3.2 Logical Connectives

%

Most programming languages provide a means for expressing the conjunction
of expressions with the connective and, which forms a logical expression that is
true if and only if all its subexpressions are true. Similarly, logical disjunction
may be expressed with the connective or, which forms an expression that is
true if any of its subexpressions are true.

In some languages, and and or are provided as procedures. In this case, all
the subexpressions of a conjunction or disjunction are always evaluated, since
operands are evaluated prior to a procedure call. This may be unnecessary.
As soon as a false subexpression of a conjunction is found, it is known that
the entire expression is false, and when a true subexpression of a disjunction is
found, true may be returned immediately. Evaluation of all the subexpressions
of a conjunction or disjunction not only may result in wasted computation,
but also restricts the way in which they may be used. For example, consider
this conjunction:

(and (pair? x) (pumber? (car x)))

Since car may only be passed a pair, the second subexpression may be eval-
uated only if it is known that the first is true. Thus it would be an error to
write such an expression if and were a procedure.

Therefore in many languages, including Scheme, logical conjunction and dis-
junction are implemented as special forms that evaluate their subexpressions

Syntactic Abstraction and Data Abstraction

have been evaluated. The requirement

be defined as in figure 3.1.1. We no longer
nce von does not change and the
o the vector-ref call is within the scope of vector-sum. A
ursion using letrec is shown in the program of
figure 3.1.2, where the procedures even? and odd? are defined for nonnegative

