figure 5.9

Meanings of the various growth functions

Mathematical Expression	Relative Rates of Growth
T(N) = O(F(N))	Growth of $T(N)$ is \leq growth of $F(N)$.
$T(N) = \Omega(F(N))$	Growth of $T(N)$ is \geq growth of $F(N)$.
$T(N) = \Theta(F(N))$	Growth of $T(N)$ is = growth of $F(N)$.
T(N) = o(F(N))	Growth of $T(N)$ is $<$ growth of $F(N)$.

Copyright:2010 © Pearson Education

To be more precise

 T(N) is O(F(N)) if there are c and N₀ such that for all N>=N₀: T(N) <= c*F(N)

Binary Search

```
public static int binarySearch(int[]a, int e) {
  int low = 0;
  int high = a.length-1;
  int mid;
  while (low <= high) {
     mid = (low + high) / 2;
     if (a[mid] < e) low = mid + 1;
     else if (a[mid] > e) high = mid - 1;
     else return mid;
     }
  return -1;
}
```

Copyright: Michael Wollowski

Binary Search - Best Case Analysis

- Size of array is of length *n*.
- In **best** case, the element we are looking for is in the center position of the array.
- In this case, we have one comparison.
- O(1)

Binary Search – Worst Case Analysis

- Size of array is of length *n*.
- What is the worst case scenario?
- What if n = 1?
- What if n = 2, 3, 4, 5, 6, 7, 8, 15, 16?

Copyright: Michael Wollowski

Binary Search – Worst Case Analysis

N	Comparisons
1	1
2	2
3	2
4	3
5	3
6	3
7	3
8	4
15	4
16	5

Binary Search – Worst Case Analysis

- Comparisons: floor(log₂ n) + 1
- O(log n)

Copyright: Michael Wollowski

Binary Search – Average Case Analysis

