figure 5.1 10 : .
Running times for .
small inputs Linear
- QO(Nlog N)
T 8r Quadratic =— 1
8 Cubic
@
2
E 6 A
[} 7
E
o 4 4
£
c
c
&
2 i
o | 1 | 1 | 1 1 1
10 20 30 40 50 60 70 90 100
Input Size (N)
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 11
1 ; : ; ; ; . . figure 5.2
I) Running times for
| Linear moderate inputs
08 L O(Nlog N |
= ’ | Quadratic —
° | Cubic
g |
8 1
g os 4i B
@ |
£ i
= ||
o 04 B
£ |
c |
s |
=]
[|
02 IJ —
|
J
o & I T I L 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input Size (N)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-2

12/10/2015

Function
¢

log N
log?N

N

Nlog N
N 2

N 3

N

Name
Constant
Logarithmic
Log-squared
Linear

Nlog N
Quadratic
Cubic

Exponential

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

figure 5.3

Functions in order of
increasing growth rate

1-3

Copyright : Michael Wollowski

Basic Principles of Analysis of Algorithms

Determine which statements or expressions to count.
For any n, one may determine:

— Best case

— Average case

— Worst case
If the best and worst case are in the same complexity class, so is the average case.
Average case analysis is typically the hardest. It requires a probabilistic analysis.
We are interested in the worst case behavior, when it comes to process control.

We are interested in the average case behavior, when it comes to minimizing hardware
cost for software that is run many times.

We might perform a best case analysis, if we want to determine the average case and
suspect that the best and worst case are the same.

1-4

12/10/2015

Linear Search

public static int linearSearch(int[]a, int e){
for (int 1 = 0; i < a.length; i++) {
if (a[i] == e) return i;
}

return -1;

Copyright : Michael Wollowski 5

Best Case Analysis of Linear Search

Size of array is of length n.

In best case, the element we are looking for
is in the first position of the array.

In this case, we have one comparison.
O(1)

Copyright : Michael Wollowski 1-6

12/10/2015

12/10/2015

Worst Case Analysis of Linear Search

* Size of array is of length n.

* In worst case, the element we are looking
for 1s in the last position of the array or not
located in the array

 In these cases, we have to look at all
elements of the array, giving n comparison.

* O(n)

Copyright : Michael Wollowski 7

Average Case Analysis of Linear Search

» Chances of looking for 15 element in array:
I/n

« Same for all other elements
* Number of elements to compare:

— Istelement: 1
— 2nd element: 2

—nth element: n

Copyright : Michael Wollowski

12/10/2015

Average Case Analysis of Linear Search

Sum of all cases: 1/n*1 + 1/n*2 + ... + 1/n*n
Factorout 1/n: 1/n*(1+2+ ... +n)
Change notation: 1/n * Z:: 0"
By induction, you can show that:

Z?z i = n¥nt1)2
Dividing by n: (n+1)/2
O(n)

Copyright : Michael Wollowski

