
12/10/2015

1

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-2

12/10/2015

2

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-3

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Basic Principles of Analysis of Algorithms

• Determine which statements or expressions to count.

• For any n, one may determine:

– Best case

– Average case

– Worst case

• If the best and worst case are in the same complexity class, so is the average case.

• Average case analysis is typically the hardest. It requires a probabilistic analysis.

• We are interested in the worst case behavior, when it comes to process control.

• We are interested in the average case behavior, when it comes to minimizing hardware

cost for software that is run many times.

• We might perform a best case analysis, if we want to determine the average case and

suspect that the best and worst case are the same.

1-4
Copyright : Michael Wollowski

12/10/2015

3

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Linear Search

public static int linearSearch(int[]a, int e){

 for (int i = 0; i < a.length; i++){

 if (a[i] == e) return i;

 }

 return -1;

}

1-5
Copyright : Michael Wollowski

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Best Case Analysis of Linear Search

• Size of array is of length n.

• In best case, the element we are looking for

is in the first position of the array.

• In this case, we have one comparison.

• O(1)

1-6
Copyright : Michael Wollowski

12/10/2015

4

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Worst Case Analysis of Linear Search

• Size of array is of length n.

• In worst case, the element we are looking

for is in the last position of the array or not

located in the array

• In these cases, we have to look at all

elements of the array, giving n comparison.

• O(n)

1-7
Copyright : Michael Wollowski

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Average Case Analysis of Linear Search

• Chances of looking for 1st element in array:

1/n

• Same for all other elements

• Number of elements to compare:

– 1st element: 1

– 2nd element: 2

– nth element: n

Copyright : Michael Wollowski

12/10/2015

5

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

• Sum of all cases: 1/n*1 + 1/n*2 + … + 1/n*n

• Factor out 1/n: 1/n*(1 + 2 + … + n)

• Change notation: 1/n *

• By induction, you can show that:
 = n*(n+1)/2

• Dividing by n: (n+1)/2

• O(n)

Average Case Analysis of Linear Search

Copyright : Michael Wollowski

