

Average Case of Quicksort

Recurrence relations

Set-up

- When it comes to the average case, the position of the pivot does not matter.
- Instead, we consider the sizes of each of the possible subsets.
- We define a cost function $\mathrm{T}(n)$, which tells the cost of using Quicksort on an array of size n.
- Consider an array of size N, then the "left" side of the pivot can be in the range of 0 to $\mathrm{N}-1$ elements.

Set-up

- This gives us an average cost of:
- $\mathrm{T}(\mathrm{L})=[\mathrm{T}(0)+\mathrm{T}(\mathrm{l})+\mathrm{T}(2)+\ldots+\mathrm{T}(\mathrm{N}-1)] / \mathrm{N}$
- We know that $T(L)=T(R)$
- The total cost of an iteration of Quicksort consists of two recursive calls and linear time to partition the array around the pivot.
- We obtain:
- $\mathrm{T}(\mathrm{N})=2(\mathrm{~T}(0)+\mathrm{T}(\mathrm{l})+\mathrm{T}(2)+\ldots+\mathrm{T}(\mathrm{N}-1)) / \mathrm{N}+(\mathrm{N}-1)$

Set-up towards recurr
 - We multiply both sides by N, obtaining:

- $\mathrm{NT}(\mathrm{N})=2(\mathrm{~T}(0)+\mathrm{T}(\mathrm{l})+\mathrm{T}(2)+\ldots+\mathrm{T}(\mathrm{N}-1))+\mathrm{N}^{2}-\mathrm{N}$
- We then write this equation for the case $\mathrm{N}-1$, so that we can simplify the equation by subtraction:
- $(\mathrm{N}-1) \mathrm{T}(\mathrm{N}-1)=2(\mathrm{~T}(0)+\mathrm{T}(\mathrm{l})+\ldots+\mathrm{T}(\mathrm{N}-2))+(\mathrm{N}-1)^{2}-(\mathrm{N}-1)$

Recurrence relation

- We subtract the $\mathrm{N}-1$ case from the N case:
- NT(N) - (N-1)T(N-1) $=2 \mathrm{~T}(\mathrm{~N}-1)+2 \mathrm{~N}-2$
- We rearrange terms and drop the insignificant -2 on the right-hand side, obtaining:
- $\mathrm{NT}(\mathrm{N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{N}-1)+2 \mathrm{~N}$
- We now have a formula for $\mathrm{T}(\mathrm{N})$ in terms of $\mathrm{T}(\mathrm{N}-1)$ only.

Average Case

- The idea is to telescope, but the equation is in the wrong form; while the argument to T goes down, the factor N goes up:

$$
\mathrm{NT}(\mathrm{~N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{~N}-1)+2 \mathrm{~N}
$$

- If we divide the equation by $\mathrm{N}(\mathrm{N}+1)$, we get:
- $\mathrm{T}(\mathrm{N}) /(\mathrm{N}+1)=\mathrm{T}(\mathrm{N}-1) / \mathrm{N}+2 /(\mathrm{N}+1)$
- We can now substitute the green expression.

Average Case

- Now telescope:
- $\mathrm{T}(\mathrm{N}) /(\mathrm{N}+1)=\mathrm{T}(\mathrm{N}-1) / \mathrm{N}+2 /(\mathrm{N}+1)$
- $\mathrm{T}(\mathrm{N}-1) / \mathrm{N}=\mathrm{T}(\mathrm{N}-2) /(\mathrm{N}-1)+2 / \mathrm{N}$
- $\mathrm{T}(\mathrm{N}-2) /(\mathrm{N}-1)=\mathrm{T}(\mathrm{N}-3) /(\mathrm{N}-2)+2 /(\mathrm{N}-1)$
- ...
- $\mathrm{T}(3) / 4=\mathrm{T}(2) / 3+2 / 4$
- $\mathrm{T}(2) / 3=\mathrm{T}(1) / 2+2 / 3$
- Notice that $T(1)=0$

Average Case

- Adding everything, we obtain:
- $\mathrm{T}(\mathrm{N}) /(\mathrm{N}+1)=$

$$
2(1 /(\mathrm{N}+1)+1 / \mathrm{N}+\ldots+1 / 4+1 / 3)+0=
$$

$$
2(1 /(\mathrm{N}+1)+1 / \mathrm{N}+\ldots+1 / 4+1 / 3+1 / 2+1)-3=
$$

- Sum of i from 1 to N of $1 / \mathrm{i}$ is $\log (\mathrm{N})$, by Theorem 5.5
- We get: $2 \log (\mathrm{~N})-3$
- Multiplying by $(\mathrm{N}+1)$ to obtain $\mathrm{T}(\mathrm{N})$, gives:
- $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N} \log \mathrm{N})$

