

**figure 12.1**A standard coding scheme

| Character | Code | Frequency | Total Bits |
|-----------|------|-----------|------------|
| a         | 000  | 10        | 30         |
| e         | 001  | 15        | 45         |
| i         | 010  | 12        | 36         |
| s         | 011  | 3         | 9          |
| t         | 100  | 4         | 12         |
| sp        | 101  | 13        | 39         |
| nl        | 110  | 1         | 3          |
| Total     |      |           | 174        |





figure 12.2

Representation of the original code by a tree





**figure 12.3**A slightly better tree



figure 12.4

An optimal prefix code tree





**figure 12.5**Optimal prefix code

| Character | Code  | Frequency | Total Bits |
|-----------|-------|-----------|------------|
| a         | 001   | 10        | 30         |
| e         | 01    | 15        | 30         |
| i         | 10    | 12        | 24         |
| s         | 00000 | 3         | 15         |
| t         | 0001  | 4         | 16         |
| sp        | 11    | 13        | 26         |
| nl        | 00001 | 1         | 5          |
| Total     |       |           | 146        |



figure 12.6

Initial stage of Huffman's algorithm





figure 12.7

Huffman's algorithm after the first merge



figure 12.8

Huffman's algorithm after the second merge





figure 12.9

Huffman's algorithm after the third merge





figure 12.10

Huffman's algorithm after the fourth merge





figure 12.11

Huffman's algorithm after the fifth merge







figure 12.12

Huffman's algorithm after the final merge