

Prim's Algorithm in detail

ALGORITHM Prim(G)

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \varnothing$ for $i \leftarrow 1$ to |V| - 1 do find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u)such that v is in V_T and u is in $V - V_T$ $V_T \leftarrow V_T \cup \{u^*\}$ $E_T \leftarrow E_T \cup \{e^*\}$ return E_T

<section-header><section-header><text><text><text><text><text>

Kruskal's Details and Analysis

ALGORITHM Kruskal(G)

//Kruskal's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of Gsort E in nondecreasing order of the edge weights $w(e_{i_1}) \leq \cdots \leq w(e_{i_{|E|}})$ $E_T \leftarrow \emptyset$; ecounter $\leftarrow 0$ //initialize the set of tree edges and its size $k \leftarrow 0$ //initialize the number of processed edges while ecounter < |V| - 1 do $k \leftarrow k + 1$ if $E_T \cup \{e_{i_k}\}$ is acyclic $E_T \leftarrow E_T \cup \{e_{i_k}\}$; ecounter \leftarrow ecounter + 1return E_T