

Prim's Algorithm in detail

$ALGORITHM$ $Prim(G)$

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \varnothing$ for $i\leftarrow 1$ to $|V|-1$ do find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u) such that v is in V_T and u is in $V - V_T$ $V_T \leftarrow V_T \cup \{u^*\}$ $E_T \leftarrow E_T \cup \{e^*\}$ return E_T

Kruskal's Algorithm

Grow forests.

Sort the edges from lowest to highest edge cost.

Create a forest in which each node forms a tree.

Pick the lowest cost edge and join the two trees, if that does not cause a cycle.

Continue until all trees are merged into a single tree.

Kruskal's Details and Analysis

$ALGORITHM$ $Kruskal(G)$

//Kruskal's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G sort E in nondecreasing order of the edge weights $w(e_{i_1}) \leq \cdots \leq w(e_{i_{|E|}})$ //initialize the set of tree edges and its size $E_T \leftarrow \varnothing$; ecounter $\leftarrow 0$ $k \leftarrow 0$ //initialize the number of processed edges while *ecounter* $< |V| - 1$ do $k \leftarrow k + 1$ if $E_T \cup \{e_{i_k}\}\$ is acyclic $E_T \leftarrow E_T \cup \{e_{i_k}\};$ ecounter \leftarrow ecounter $+1$ return E_T