Red Black Trees

- Definition
- Bottom-up Insertion
- Top-Down Insertion

Definition of Red Black Trees

- A Red Black tree is a BST with the following properties:

1. Every node is either colored red or black.
2. The root is black.
3. No two successive nodes are red.
4. Every path from the root to a null node has the same number of black nodes.

Example

Bottom-Up Insertion Strategy

- Insertion is always done as a leaf (as in ordinary BST insertion) and the new node is red.
- In Bottom-Up insertion, we first insert the node.
- On the recursive travel back up the tree, we balance the tree.
- Rotations preserve red-black tree properties.

Bottom-Up Insertion Strategy

figure $\mathbf{1 9 . 3 5}$
If S is black, a single rotation between parent and grandparent, with appropriate color changes, restores property 3 if X is an outside grandchild.

(a) Before rotation
(b) After rotation

Bottom-Up Insertion Strategy

figure 19.36
If S is black, a double rotation involving X, the parent, and the grandparent, with grandparent, with appropriate color changes, restores property 3 if X is an inside grandchild.

Bottom-Up Insertion Strategy

figure 19.37
If S is red, a single rotation between parent and grandparent, with appropriate color changes, restores
property 3 between X
and P.

Top-Down Insertion Strategy

- Insertion is always done as a leaf (as in ordinary BST insertion) and the new node is red.
- In Top-Down insertion, the rotations are done while traversing down the tree to the insertion point.
- Top-Down insertion can be done iteratively.

Situation: A black node with two red children.
Action: - Recolor the node red and the children black.

- If the parent is red, perform rotations, otherwise continue down the tree

Rotations

- If the color flip produced two successive red nodes, perform either a single or a double rotation.
- The rotations are just like those for AVL trees.
- If the two red nodes are both left children or both right children, perform a single rotation.
- Otherwise, perform a double rotation.
- The only difference to AVL tree rotations are that we recolor nodes rather than adjust their heights.

- Again, the rotation is done on G, the grandparent of this.

Double Rotation on Left Child (cont'd)

- Recolor this and G

Testing

- Insert: 1, 2, 3, 4, 5, 6, 7, 7
- Insert: 7, 6, 5, 4, 3, 2, 1, 1
- Insert: $10,85,15,70,20,60,30,50,65,80$, 90, 40, 5, 55

