Proof of upper bound of AVL tree height
We can show that an AVL tree with n nodes has $\mathrm{O}(\log \mathrm{n})$ height. Consider figure 19.22 from our book:

figure $\mathbf{1 9 . 2 2}$
Minimum tree of height H

In order to construct an AVL tree of height h with a minimum number of nodes, one child out to have a height $\mathrm{h}-1$ and the other child one ought to have a height $\mathrm{h}-2$.

Let N_{h} represent the minimum number of nodes that can form an AVL tree of height h . If we know $\mathrm{N}_{\mathrm{h}-1}$ and $\mathrm{N}_{\mathrm{h}-2}$, we can determine N_{h}. By creating a tree with a root whose left sub-tree has $\mathrm{N}_{\mathrm{h}-1}$ nodes and whose right sub-tree has $\mathrm{N}_{\mathrm{h}-2}$ nodes, we have constructed the AVL tree of height h with the least nodes possible.

This AVL tree has a total of $\mathrm{N}_{\mathrm{h}-1}+\mathrm{N}_{\mathrm{h}-2}+1$ nodes. Using this formula, we can then reduce as such:
$\mathrm{N}_{\mathrm{h}}=\mathrm{N}_{\mathrm{h}-1}+\mathrm{N}_{\mathrm{h}-2}+1$
$\mathrm{N}_{\mathrm{h}-1}=\mathrm{N}_{\mathrm{h}-2}+\mathrm{N}_{\mathrm{h}-3}+1$
$\mathrm{N}_{\mathrm{h}}=\left(\mathrm{N}_{\mathrm{h}-2}+\mathrm{N}_{\mathrm{h}-3}+1\right)+\mathrm{N}_{\mathrm{h}-2}+1$
$\mathrm{N}_{\mathrm{h}}>2 \mathrm{~N}_{\mathrm{h}-2}$
$\mathrm{N}_{\mathrm{h}-2}>2 \mathrm{~N}_{\mathrm{h}-4}$
$\mathrm{N}_{\mathrm{h}}>2 * 2 \mathrm{~N}_{\mathrm{h}-4}$
$\mathrm{N}_{\mathrm{h}}>2 * 2 * 2 \mathrm{~N}_{\mathrm{h}-6}$
$\mathrm{N}_{\mathrm{h}}>2^{\mathrm{h} / 2}$
$\log \left(\mathrm{N}_{\mathrm{h}}\right)>\log \left(2^{\mathrm{h} / 2}\right)$
$\log \left(N_{h}\right)>h / 2$
$2 \log \left(N_{h}\right)>h$

