
CSSE 230 – Fundamentals of Computing
Final Exam

Spring term, 2022-2023

Your name: _________________________________

Instructions:
- All the work you turn in must be your own.
- You must not use any forms of communication or cooperation.
- This is an open book exam:

o For any portion, you may look at the book whether hardcopy or online.
o You may look at our CSSE 230 or Moodle web-site and any page linked

directly from it.
o You may not search the web and you may not use ChatGPT or like

technologies during the exam.
o You may look at any of the Java documentation, in particular that for data

structures.
o For the paper part, you may NOT run any applets nor any code.
o For the on-the-computer part, you may NOT copy any of the code on your

computer.
- Submit the written portion to the FinalExam drop box on Moodle.

Problem Points Your score

1 8

2 8

3 12

4 10

5 8

isBinaryGraph() 10

addGraph() 20

toString() 24

Total 100

1) a) [4 points] Insert the following elements: 6, 8, 9 in the order listed, into the Red-
Black tree below. Use top-down insertion and show intermediate trees in case of
rotations. Indicate which nodes are red and which ones are black. In the tree below,
red nodes are drawn as a square.

b) [4 points] Remove the following element: 7 from the Red-Black tree below. Use
top-down removal and show intermediate trees in case of rotations. Indicate which
nodes are red and which ones are black. In the tree below, red nodes are drawn as a
square.

7

17

12

5

15

14

9

10

7 11

8

18

6 14

2) a) [4 points] Insert the following elements: 13, 7 in the order listed, into the AA tree
below. Either indicate the level of each node by writing down its level next to it or
draw nodes that are on the same level using horizontal links. Show intermediate trees
in case of rotations.

b) [4 points] Remove node 5 from the AA tree below. Either indicate the level of each
node by writing down its level next to it or draw nodes that are on the same level
using horizontal links. Show intermediate trees in case of rotations

10

 9

8 12

18 7 3

4

6

5

8 12 14

3) Analyze the following method. Assume that the getBucket() method returns the ith
bucket. Count the number of element to element comparisons.

 public static ArrayList<Integer> hashTableSort(ArrayList<Integer> a){
 HashSet<Integer> ht = new HashSet<Integer>(a.size());
 for (int i = 0; i < a.size(); i++){
 ht.add(a.get(i));
 }
 for (int i = 0; i < ht.size(); i++) mergeSort(ht.getBucket(i));
 ArrayList<Integer> temp = new ArrayList<Integer>();
 for (int i = 0; i < ht.size(); i++) temp.addAll(ht.getBucket(i));
 return temp;

 }

a. [4 points] Determine the worst case runtime of the method hashTableSort().
What is the big-Oh runtime of this algorithm: ________________________

Describe a case when the worst case occurs:

b. [4 points] Determine the best case runtime of hashTableSort().

What is the big-Oh runtime of this algorithm: ________________________
Describe a case when the best case occurs:

c. [4 points] Does the method return a sorted ArrayList? Justify your answer.

4) In class, we saw the benefits of adding a HashMap to a data structure: it offers O(1)
performance for finding an element. Below is an excerpt of the data we discussed.
The 2nd data row contains the data for finding an element using a HashMap.

Another performance test we conducted is the speed it takes to generate an in-
order iterator and reading off the first 5-100 pieces of data. Here Skiplists shine.
As a matter of fact, if we look at the Skiplist data for HashMap find and for
Iterators in-order retrieval, Skiplist top all other data structures. However,
Skiplists are very slow on insert and removal. Suppose we combine a Skiplist
with a Top-down Red-Black tree.

a) [2 points] Determine the average case big-Oh run time of inserting an element
into this composite data structure. Justify your answer.

b) [2 points] Determine the average case run time, based on the table from above.
Justify your answer.

c) [6 points] Propose a modification of Top-down Red-Black trees that maintains its
current performance, except, it matches the performance of Skiplists when it
comes to producing the first 5-100 pieces of data through the in-order iterator.

5) We justified B-trees for applications that have a lot of data, such as data bases.
a) [2 points] How do very large amounts of data affect the runtime performance of

algorithms?

b) [2 points] What is an essential property of B-trees that addresses the runtime
performance issue from (a).

c) [4 points] Where else in this course have we seen the effect that very large

amounts of data have on the performance of algorithms. Justify your response.

On-the-Computer part
• Download the FinalExam.zip project from our Moodle site.
• All code you write should be correct, efficient, and use good style. However, no

documentation is required.
• All code you submit MUST be your own work and you must use the given starter code.
• Please use the provided unit test-cases, as well as your own test-cases to ensure all

functional and performance requirements are met.
• The points given by the unit test-cases are assuming an honest effort. For example,

submitting code that is designed to merely satisfy the test cases will result in zero points
given. Sometimes, for example in case of testing Boolean functions, the score given by
the test-cases may not represent the true functionality of the code and in that case, may be
adjusted up or down. Partial credit will be given where appropriate.

• Implement the procedures documented below and in the unit test cases.
• Please submit your Graph.java file to the FinalExam drop-box on our Moodle course

site.
• Recall that you need to add JUNIT 4 to the build path. In the Testing.java file, hover the

cursor over the “org.junit…” import, then click on “Fix project setup.” In the window
that pops up select “Add JUnit 4 to build path.”

/**
 * This method determines whether a graph is a binary graph.
 * By this we mean that every node has either zero, one or
 * two children.
 * @return true if every node has either 0, 1, or 2 children
 * and false otherwise
 */
public boolean isBinaryGraph() {

/**
 * This method adds the graph g to this graph. It will only
 * add additional nodes and edges that are not already
 * contained in this graph.
 * @param g Graph to be added
 * @return This method returns true if all nodes and all edges
 * of g were added. It returns false otherwise.
 */
public boolean addGraph(Graph<T> g) {

/**
* This method returns a string of the node keys, in increasing
* distance from the node passed to it. Distance is measured by
* number of edges. We may call this a level-order traversal of
* the graph. You may assume that the graph is connected. If two
* nodes have the same distance, then preserve the ordering as
* found in the list of neighbors. Each node key should appear
* only once, in other words, please avoid cycles.
* @param start The node at which the traversal begins
* @return A list of the node keys, enclosed in square brackets
* and separated by ", ". If the graph is empty, the method returns
* just "[]".
*/
public String toString(T start) {

