
Extended Binary Trees
Recurrence relations

After today, you should be able to…
…explain what an extended binary tree is
…solve simple recurrences using patterns

} Today:
◦ Extended Binary Trees (on HW9)

◦ Recurrence relations, part 1

} GraphSurfing Milestone 2
◦ Two additional methods: shortestPath(T start, T end)

and stronglyConnectedComponent(T key)
◦ Tests on Living People subgraph of Wikipedia

hyperlinks graph
◦ Bonus problem: find a “challenge pair”
� Hard to solve optimally! Longest path problem

} Today:
◦ Extended Binary Trees (on HW9)

◦ Recurrence relations, part 1

} Due later:
◦ Hardy’s Taxi, part two: efficiency boost!
� Some HW1 solutions took 60+ sec to find the 4th taxicab

#.
Now you’ll try to find the 50,000th one in the same time!
…3 or 4 nested for-loops won’t work.

Bringing new life to Null
nodes!

} Not a single NULL_NODE,
but many NULL_NODEs

} An Extended Binary tree is either
◦ an external (null) node, or
◦ an (internal) root node and two

EBTs TL and TR.
} We draw internal nodes as circles and external nodes as

squares.
◦ Generic picture and detailed picture.

} This is simply an alternative way of viewing binary trees,
in which we view the external nodes as “places” where a
search can end or an element can be inserted.

1-2

} Property P(N): For any N>=0, any EBT with N
internal nodes has _______ external nodes.

} Prove by strong induction, based on the
recursive definition.
◦ A notation for this problem: IN(T), EN(T)

3-5

Hint (reminder): Find a way to
relate the properties for larger
trees to the property for smaller
trees.

A technique for analyzing
recursive algorithms

} Split the sequence in half
} Where can the maximum subsequence appear?

} Three possibilities :
◦ entirely in the first half,
◦ entirely in the second half, or
◦ begins in the first half and ends in the second half

6

1. Using recursion, find the maximum sum of
first half of sequence

2. Using recursion, find the maximum sum of
second half of sequence

3. Compute the max of all sums that begin in
the first half and end in the second half
◦ (Use a couple of loops for this)

4. Choose the largest of these three numbers

What’s the
run-time?

7

N = array size

Runtime =
Recursive part +
non-recursive part

8

} Write a Recurrence Relation
◦ T(N) gives the run-time

as a function of N
◦ Two (or more) part definition:
� Base case,

like T(1) = c
� Recursive case,

like T(N) = T(N/2) + 1

So, what’s the recurrence relation
for the recursive MCSS algorithm?

9

10

Runtime =
Recursive part +
non-recursive part

T(N) =
2T(N/2) + q(N)

10

Runtime =
Recursive part +
non-recursive part

T(1) = 1

} An equation (or inequality) that relates the
nth element of a sequence to certain of its
predecessors (recursive case)

} Includes an initial condition (base case)
} Solution: A function of n.

} Similar to differential equation, but discrete
instead of continuous

} Some solution techniques are similar to
diff. eq. solution techniques

} One strategy: look for patterns

} Examples:
As class:
◦ T(0) = 0, T(N) = 2 + T(N-1)
◦ T(0) = 1, T(N) = 2 T(N-1)
◦ T(0) = T(1) = 1, T(N) = T(N-2) + T(N-1)

On quiz:
◦ T(0) = 1, T(N) = N T(N-1)
◦ T(0) = 0, T(N) = T(N -1) + N
◦ T(1) = 1, T(N) = 2 T(N/2) + N

(just consider the cases where N=2k)

11-15

} Find patterns
} Telescoping
} Recurrence trees
} The master theorem

14-15

