"Day 8 Exercise"

"Combustion of Isooctane in air with phi = 0.9"

"Specs on the fuel"

alpha = 8 beta = 18 a_s = alpha+beta/4

"Fuel air equivalence ratio"

phi =0.9

"Balance equations"

alpha = b 2*a_s/phi = 2*b+c+2*e beta=2*c 3.773*(2*a_s/phi)=2*d

"Molar fractions - mixture"

 $n_{fuel} = 1$ $n_{O2} = a_{s/phi}$ $n_{N2} = 3.773^{*}n_{O2}$ $n_{mix} = n_{fuel+n_{O2}+n_{N2}}$ $y_{O2} = n_{O2/n_{mix}}$ $y_{N2} = n_{N2/n_{mix}}$ $y_{fuel} = n_{fuel/n_{mix}}$ $Mw_{mix} = y_{fuel*MOLARMASS(C8H18)+y_{O2}*MOLARMASS(O2)+y_{N2}*28.16$

"Molar Fractions burned gas"

n_bg = b+c+d+e y_exCO2 = b/n_bg y_exH2O= c/n_bg y_exN2 = d/n_bg y_exO2 = e/n_bg Mw_bg=y_exO2*MOLARMASS(O2)+y_exN2*28.16+y_exCO2*MOLARMASS(CO2)+y_exH2O*MOLARMASS(H2O)

Day 8 Exercise

Combustion of Isooctane in air with phi = 0.9

Specs on the fuel

 $\alpha = 8$

 $\beta = 18$

 $a_s = \alpha + \frac{\beta}{4}$

Fuel air equivalence ratio

 $\phi = 0.9$

Balance equations

$$\alpha = b$$

 $2 \cdot \frac{a_s}{\phi} = 2 \cdot b + c + 2 \cdot e$

 $\beta = 2 \cdot c$

 $3.773 \cdot 2 \cdot \frac{a_s}{\phi} = 2 \cdot d$

Molar fractions - mixture

 $n_{fuel} = 1$

 $n_{O2} = \frac{a_s}{\phi}$

 $n_{N2} = 3.773 \cdot n_{O2}$

 $n_{mix} = n_{fuel} + n_{O2} + n_{N2}$

 $y_{O2} = \frac{n_{O2}}{n_{mix}}$

 $y_{N2} = \frac{n_{N2}}{n_{mix}}$

 $y_{\text{fuel}} = \frac{n_{\text{fuel}}}{n_{\text{mix}}}$

 $Mw_{mix} = y_{fuel} \cdot MolarMass['C8H18'] + y_{O2} \cdot MolarMass['O2'] + y_{N2} \cdot 28.16$

Molar Fractions burned gas

 $n_{bg} = b + c + d + e$ $y_{exCO2} = \frac{b}{n_{bg}}$ $y_{exH2O} = \frac{c}{n_{bg}}$ $y_{exN2} = \frac{d}{n_{bg}}$ $y_{exO2} = \frac{e}{n_{bg}}$

 $\mathsf{Mw}_{\mathsf{bg}} = y_{\mathsf{exO2}} \cdot \mathsf{MolarMass}\big[\,\mathsf{'O2'}\,\big] + y_{\mathsf{exN2}} \cdot 28.16 + y_{\mathsf{exCO2}} \cdot \mathsf{MolarMass}\big[\,\mathsf{'CO2'}\,\big] + y_{\mathsf{exH2O}} \cdot \mathsf{MolarMass}\big[\,\mathsf{'H2O'}\,\big]$

File:C:\Personal\Class\ME410\Week2\Day8ex.EES

EES Ver. 6.577: #659: for use by Students and Faculty of the ME Dept, Rose-Hulman

Unit Settings: [kJ]/[K]/[kPa]/[kg]/[radians]

$\alpha = 8$	β = 18	a _s = 12.5	$\phi = 0.9$	b = 8	c = 9
e = 1.389	d = 52.4	n _{fuel} = 1	n _{O2} = 13.89	$n_{N2} = 52.4$	n _{mix} = 67.29
$y_{O2} = 0.2064$	$y_{N2} = 0.7787$	$y_{fuel} = 0.01486$	$Mw_{mix} = 30.23$	n _{bg} = 70.79	$y_{exCO2} = 0.113$
$y_{exH2O} = 0.1271$	$y_{exN2} = 0.7402$	$y_{exO2} = 0.01962$	$Mw_{bg} = 28.74$		