ME 410 Day 25

• Example Problem and Exercise: Turbocharged Limited Pressure "Air" Engine

PV Diagram -- Not to Scale

- Solid lines indicate processes in the cylinder
- Dashed lines indicate other processes of interest.

Note how $P_i > P_e$. This is the effect of turbocharging the engine with a compressor which is driven by the hot exhaust gases.

There is an intercooler which removes heat from the air after compression.

Exercise:

Predict the performance of this engine.

- Indicated Fuel Conversion Efficiency (Gross & Net)
- Indicated Power at 4000 rpm (Gross & Net)
- Imep at 4000 rpm (Gross and Net)
- Estimated Brake Power at 4000 rpm. $\eta_m = 0.70$
- Estimated Brake Torque at 4000 rpm

Engine Data

Specification	
Max cylinder volume (liters)	3.687
Min cylinder volume (liters)	0.410
Displacement (liters)	3.277
Compression ratio	9
AF	15
Fuel Heating Value (kJ/kg)	44,300

Cycle / Process Data

Point	Description	Property	Value
а	Air at intake	Т (К)	333
		P (kPa)	103.4
		v (m ³ /kg)	0.9244
		h (kJ/kg)	333.7
		u (kJ/kg)	238.1
		s (kJ/ kg-K)	5.797
b	After	Т (К)	361.5
	turbocharging		
		P (kPa)	137.9
		v (m ³ /kg)	0.7524
		h (kJ/kg)	362.3
		u (kJ/kg)	258.6
		s (kJ/ kg-K)	5.797

Point	Description	Property	Value
1	Start of	T (K)	333
	compression		
		P (kPa)	137.9
		v (m ³ /kg)	0.6931
		h (kJ/kg)	333.7
		u (kJ/kg)	238.1
		s (kJ/ kg-K)	5.714
2	End of	T (K)	772.5
	compression		
		P (kPa)	2879
		v (m ³ /kg)	
		h (kJ/kg)	791.9
		u (kJ/kg)	570.2
		s (kJ/ kg-K)	
3a	End of cv	T (K)	2253
	combustion		
		P (kPa)	
		v (m ³ /kg)	
		h (kJ/kg)	2569
		u (kJ/kg)	1923
		s (kJ/ kg-K)	6.676
3b	End of cp	T (K)	3307
	combustion		
		P (kPa)	
		v (m ³ /kg)	0.1130
		h (kJ/kg)	3922
		u (kJ/kg)	2972
		s (kJ/ kg-K)	7.168
4	End of	T (K)	1952
	expansion		
		P (kPa)	808.5
		v (m ³ /kg)	
		h (kJ/kg)	2192
		u (kJ/kg)	1631
		s (kJ/ kg-K)	

Point	Description	Property	Value
5	Expanded	Т (К)	1200
	exhaust 7		
	residue		
		P (kPa)	103.4
		v (m ³ /kg)	3.33
		h (kJ/kg)	1277
		u (kJ/kg)	932.7
		s (kJ/ kg-K)	7.168
6	In cylinder	Т (К)	
	after		
	blowdown		
		P (kPa)	
		v (m ³ /kg)	
		h (kJ/kg)	
		u (kJ/kg)	
		s (kJ/ kg-K)	

- 1. Begin by filling in all blanks in this table based on your knowledge of the engine processes.
- 2. Calculate the masses:
 - mass of charge filling cylinder at 1
 - residual fraction
 - mass of residual in the charge
 - mass of fuel in the charge
 - mass of air in the charge
- 3. Calculate the total heat in (kJ) added at constant volume. Do the same for the total heat added at constant pressure.
- 4. Calculate the works:
 - Work done on the gas in compression stroke
 - Work done by the gas during expansion 3a to 3b
 - Work done by the gas during expansion 3b to 4
 - Work done by the gas during intake stroke

- Gross and net work per cycle
- 5. Calculate the fuel conversion efficiencies:
 - Net based on net work per cycle
 - Gross based on gross work per cycle
 - Which is greatest?
- 6. Calculate the powers:
 - Net based on net work per cycle
 - Gross based on gross work per cycle
 - Which is greatest?
 - Base the brake power estimate on gross work/cycle
- 7. Calculate the imeps
 - Net based on net work / cycle
 - Gross based on gross work / cycle
- 8. Calculate the torque estimate based on brake power.

Complete this as hw by Thursday, October 24.

There are a couple of other interesting things that we will go over together.

- heat removal in intercooler
- energy available to run turbo

There will be a question similar to this one on the next test.