"RICH MIXTURE Composition Calculations - Unburned Mixture and low Temperature Burned Mixture" "Reference: Heywood. Section 4.2" "Hydrocarbon fuels -- Start with Data on Fuel" alpha = 8 beta = 18 M_f = MOLARMASS(C8H18) y = beta/alpha "H/C ratio for the fuel" epsilon = 4/(4+y) "Fuel air equivalence ratio - also air composition" phi = 1.2 psi = 3.773 "Fraction of burned gas in the mixture" x_b = 0.15 "Temperature for burned mixture - 1000 selected to agree with CSU Applet default" T1 = 1000 "[K]" "Molar balance equations - per mole of O2" epsilon*phi = n_CO2b + n_COb 2*(1-epsilon)*phi = n_H2Ob + n_H2b 1 = n_CO2b + 1/2 * n_COb + 1/2 * n_H2Ob psi = n_N2b "Additional equation from chemical equilibrium" K = exp( 2.743 - 1.761e3/T1 - 1.611e6/T1^2 + 0.2803e9/T1^3) K = (n_H2Ob*n_COb)/(n_H2b*n_CO2b) "At this point the exhaust gas composition is calculated." n_b = n_CO2b + n_COb + n_H2Ob + n_H2b + n_N2b "Molar Ratios - Per Mole Air - Product - Put in to Compare with CSU Applet" moles_air = 1 + psi yr_H2 = n_H2b /moles_air yr_CO = n_COb / moles_air yr_N2 = n_N2b / moles_air yr_CO2 = n_CO2b / moles_air yr_H2O = n_H2Ob/ moles_air "Mass ratios - Per Kg Air - Product - Put in to Compare with CSU Applet" mass_air = moles_air * MOLARMASS(Air) xr_H2 = n_H2b * MOLARMASS(H2) / mass_air xr_CO = n_COb * MOLARMASS(CO) / mass_air xr_N2 = n_N2b * MOLARMASS(N2) / mass_air xr_CO2 = n_CO2b * MOLARMASS(CO2) / mass_air xr_H2O = n_H2Ob * MOLARMASS(H2O) / mass_air "This is test code to check vs. the text. See table 4.3" {n_bt = (2-epsilon)*phi + psi c = n_COb n_CO2t = epsilon*phi-c n_H2t= 2*(phi-1)-c n_H2Ot = 2*(1-epsilon*phi)+c} "The number of moles of mixture is now calculated" n_fuel = (12*epsilon*phi+2*(1-epsilon)*phi*MOLARMASS(H2))/M_f {n_fuelt = (4/M_f )*(1+2*epsilon)*phi} "Another Text Comparison" n_mix = n_fuel + 1 + psi "Finally the numberof moles of unburned gas is calculated" n_u = (1-x_b)*n_mix + x_b*n_b n_f = (1-x_b)*n_fuel n_O2 = 1-x_b n_CO2 = x_b*n_CO2b n_CO = x_b*n_COb n_H2 = x_b*n_H2b n_H2O = x_b*n_H2Ob n_N2 = psi "More comparison - Table 4.4" { n_f1 = 4*(1-x_b)*(1+2*epsilon)*phi/M_f c=n_COb n_O21 = 1-x_b n_N21= psi n_CO21 = x_b*(epsilon*phi-c) n_H2O1 = x_b*(2*(1-epsilon*phi)+c) n_CO1 = x_b*c n_H21 = x_b*(2*(phi-1)-c) } "Molar Fractions" y_f = n_f /n_u y_O2 = n_O2 / n_u y_N2 = n_N2 / n_u y_CO2 = n_CO2 / n_u y_CO = n_CO / n_u y_H2O = n_H2O / n_u y_H2 = n_H2 / n_u