"Example 3.5 on Page 89-90. Day 13 Notes" "See class notes for additional explanation" T_e = 1700 "[K]" P_e = Po# "Assume 1 atm." "Mass balance for the main reaction" a+c=8 2*b + 2*d = 18 2*a+b+c = 25/1.2 e = 12.5/1.2 * 3.773 n_T = a+b+c+d+e y1 = a / n_T "Mole frac CO2" y2 = b / n_T "Mole frac H2O" y3 = c / n_T "Mole frac CO" y4 = d / n_T "Mole frac H2" y5 = e / n_T "Mole frac N2" "Gibbs Free Energy of Reactant and Product Species" g_CO2 = ENTHALPY(CO2,T=T_e) - T_e*ENTROPY(CO2, T=T_e,P=y1*P_e) g_H2 = ENTHALPY(H2, T=T_e) - T_e*ENTROPY(H2, T=T_e,P=y4*P_e) g_CO = ENTHALPY(CO, T=T_e) - T_e*ENTROPY(CO, T=T_e,P=y3*P_e) g_H2O = ENTHALPY(H2O, T=T_e) - T_e*ENTROPY(H2O, T=T_e,P=y2*P_e) "Gibbs Free Energy of the Products" G_P = 1*g_CO + 1*g_H2O "Gibbs Free Energy of the Reactants" G_R = 1*g_CO2 + 1*g_H2 "Equilibrium" DELTAG = G_P - G_R DELTAG = 0 "Now see if we get close to the book's equilibrium constant. Why do these simplified calculations of the equilibrium constant work" K_P1 = (b*c)/(a*d) K_P2 = (y2*y3)/(y1*y4) K_book = 3.388