" Example 3.4. We have the equilibrium reaction CO + 1/2 O2 = CO2. The product is disassociated as follows alpha CO + n2 O2 + n3 CO2. Find the concentrations of each species under the following conditions." P_0 = Po# T_eq = 2500 "[K] Equilibrium temperature" P_eq =5.76*P_0 "[KPa] Equilibrium pressure" "Carbon balance" 1 = alpha + n_3 "Oxygen balance" 2 = alpha + 2*n_2 + 2*n_3 "Calculation of Mole Fractions in the Gas Product Mixture" n_P = alpha + n_2 + n_3 y_1 = alpha/n_P "CO" y_2 = n_2/n_P "O2" y_3 = n_3/n_P "CO2" "Gibbs free energy at equilibrium temperature of the Product species" g_CO2 = ENTHALPY(CO2,T=T_eq) - T_eq*ENTROPY(CO2, T=T_eq,P=y_3*P_eq) g_CO = ENTHALPY(CO, T=T_eq) - T_eq*ENTROPY(CO, T=T_eq,P=y_1*P_eq) g_O2 = ENTHALPY(O2, T=T_eq) - T_eq*ENTROPY(O2, T=T_eq,P=y_2*P_eq) "Gibbs Free Energy of the Product" G_prod = 1.0 * g_CO2 "Gibbs Free Energy of the Reactants" G_reac = 1.0 * g_CO + 0.5 * g_O2 "Find Equilibrium" DELTAG = G_reac - G_prod DELTAG = 0 "Now back out the same equilibrium constant that the text has" P_1 = y_1*P_eq P_2 = y_2*P_eq P_3 = y_3*P_eq K_P = (P_3/P_0)/( (P_1/P_0) * sqrt(P_2/P_0) )