"Based on Example 4.2 in Heywood. Done with EES and Flair!" "A spark ignition engine with a compression ratio of 9.5 takes in stoichiometric fuel vapor mixture at the start of compression. Temperature is 400K, p = 1 atm. Find the temperature and pressure at the end of the stroke. Calculate work done per mass mixture." r_c = 9.5 T_1 = 400 "[K]" P_1 = Po# "[kPa]" "Let's do the stoichiometry of this mixture" phi = 1 n_fuel = 1 n_O2 = 12.5/phi n_N2 = 3.773*n_O2 n_air = n_O2+n_N2 n_u = n_fuel + n_air y_fuel = n_fuel/n_u y_O2 = n_O2/n_u y_N2 = n_N2/n_u M_u = y_fuel*MOLARMASS(C8H18)+y_O2*MOLARMASS(O2)+y_N2*MOLARMASS(N2) R_u = R# / M_u "Next, let's get the properties of this mixture at the start of the compression stroke" P_1*v_1 = R_u*T_1 "Ideal Gas Law" u_1 = y_fuel*INTENERGY(C8H18,T=T_1)+y_O2*INTENERGY(O2,T=T_1)+y_N2*INTENERGY(N2,T=T_1) s_1 = y_fuel*ENTROPY(C8H18,T=T_1,P=y_fuel*P_1)+y_O2*ENTROPY(O2,T=T_1,P=y_O2*P_1)+y_N2*ENTROPY(N2,T=T_1,P=y_N2*P_1) "Next, the properties at the end of the compression stroke" P_2*v_2 = R_u*T_2 "Ideal Gas Law" v_2 = v_1/r_c "Volume change with compression" u_2 = y_fuel*INTENERGY(C8H18,T=T_2)+y_O2*INTENERGY(O2,T=T_2)+y_N2*INTENERGY(N2,T=T_2) s_2 = y_fuel*ENTROPY(C8H18,T=T_2,P=y_fuel*P_2)+y_O2*ENTROPY(O2,T=T_2,P=y_O2*P_2)+y_N2*ENTROPY(N2,T=T_2,P=y_N2*P_2) "Isentropic Process" s_2 = s_1 "Calculate the work with the first law of thermodynamics in kJ/(kg air)" w_12 = (u_2 - u_1)*(n_u/(n_air*MOLARMASS(Air)))