ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

ES 204 Mechanical Systems

Finite-Time Form of Linear and Angular Momentum

(by P. Cornwell)

In the text the finite-time forms of linear and angular momentum are referred to as "impulse-momentum methods". For a <u>closed system</u> these can be written as:

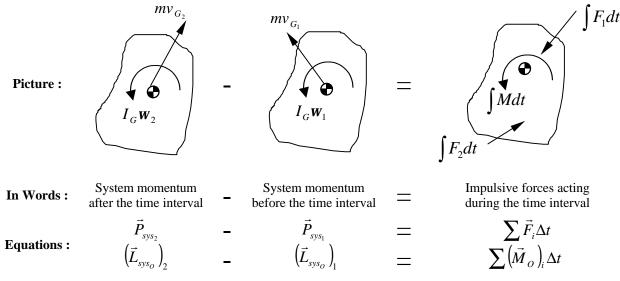
$$\Delta \vec{P}_{sys} = \int_{t_1}^{t_2} \vec{F} dt \qquad \text{and} \qquad \Delta \vec{L}_{sys_0} = \int_{t_1}^{t_2} \vec{M}_0 dt \qquad (1), (2)$$

If there are any impulsive forces (an impulsive force is a large force that acts over a small time) acting on the system then non-impulsive forces (weight, springs, etc.) can be neglected and Eq. 1-2 become

$$\Delta \vec{P}_{\text{sys}} = \sum_{i} \vec{F}_{i} \Delta t$$
 and $\Delta \vec{L}_{\text{sys}_{0}} = \sum_{i} (\vec{M}_{0})_{i} \Delta t$ (3), (4)

where \vec{F}_i and \vec{M}_i are external impulsive forces acting on the system. Recall for a rigid body the linear and angular momentum are

$$\vec{P}_{sys} = m\vec{v}_G$$
 and $\vec{L}_{sys_O} = I_G\vec{\omega} + \vec{r}_{G/O} \times m\vec{v}_G$ (5), (6)


When to use

The finite time form of conservation of linear and angular momentum are typically used when:

- there is an impact or impulsive forces in the problem
- there are several interacting objects
- there is a force as a function of time
- want to find velocities, times or forces (especially impulsive forces)

Procedure

Since Eqs (1-2) and Eqs. (3-4) are vector equations it is often useful to draw <u>impulse momentum diagrams</u> as shown below.

We therefore have three scalar equations

- 1. Linear momentum in the x-direction
- 2. Linear momentum in the y-direction
- 3. Angular momentum (moment of the momentum) about any axis

Impulse-Momentum Page 1 of 1