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Ray tracing requires testing of many rays 
to determine intersections with objects. A 
way of reducing the computation is to or- 
ganize objects into hierarchical data struc- 
tures. We examine two heuristics for space 
subdivisions using bintrees, one based on 
the intuition that surface area is a good 
estimate of intersection probability, one 
based on the fact that the optimal splitting 
plane lies between the spatial median and 
the object median planes of a volume. Tra- 
versal algorithms using cross links be- 
tween nodes are presented as generaliza- 
tions of ropes in octrees. Simulations of 
the surface area heuristic and the cross link 
scheme are presented. These results gener- 
alize to other hierarchical data structures. 
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1 Introduction 

Ray tracing is a popular algorithm for computer 
rendering of synthetic images (Glassner 1987a). 
The main reason why the use of ray tracing is so 
widespread is its simplicity of coding and the com- 
parative ease with which ray tracing renders many 
realistic effects including shadows, penumbrae, re- 
flection, refraction (transparency), and motion blur 
(Cook et al. 1984). The principal drawback of ray 
tracing is its comparatively high computational cost, 
which is due primarily to the high occurrence of 
one basic operation, the ray-scene intersection test. 
The simplest, brute-force method of determining 
the ray-scene intersection is to test the ray against 
each object, remembering which object, if any, has 
the nearest point of intersection. This has been 
vastly improved with the use of scene structuring 
(Fujimoto et al. 1986; Glassner 1984, 1987b, 1988; 
Goldsmith and Salmon 1987; Kaplan 1985; Kay 
and Kajiya 1986; Scherson and Caspary 1987; Ru- 
bin and Whitted 1980; Weghorst et al. 1984), which 
reduces the number of ray-object intersection tests 
required. 
Scenes are modeled with a variety of different im- 
plicitly and explicitly defined objects and surfaces. 
They range from simple objects, such as spheres, 
ellipses, triangles, polygons, and parallelepipeds, to 
more complex surfaces such as cubic patches, 
spline surfaces, and implicit functions. For all but 
the simplest of these, an intersection test of a ray 
with the object is a nontrivial computation. To 
speed up the intersection test, a bounding volume 
is placed around the object. The bounding volume 
is typically a very simple type of object with an 
easy intersection test, such as a sphere or a paralle- 
lepiped with sides perpendicular to the major axes. 
In order to determine whether a ray intersects a 
particular object, the ray is first tested against the 
object's bounding volume. If the ray does not inter- 
sect the bounding volume, it does not intersect the 
object inside. Otherwise, the ray must be tested 
against the object in the usual manner. A common 
type of object for bounding volumes is a rectangu- 
lar parallelepiped or box with each side perpendic- 
ular to a major axis. 
The notion of a bounding box generalizes to the 
idea of scene structuring with a hierarchical data 
structure. There are two main classes of hierarchy 
applicable to ordering the scene, one a dual of the 
other. Object subdivision clusters the objects com- 
posing a scene, recording the space that each object 
inhabits. Space subdivision subdivides space, re- 
cording the objects that inhabit each region of 
space. 
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A hierarchical extent tree is a recursive subdivision 
of objects. The root of the tree corresponds to a 
bounding volume containing all of the objects in 
the scene. The children of a node correspond to 
a set of bounding volumes that divide the objects 
contained in the node's bounding volume. When 
the number of objects in a node's bounding volume 
is one, the node is given a single child where the 
object is actually stored. Although reference is 
made to objects enclosed by, or contained within, 
a node's bounding volume, it should be observed 
that objects are actually only stored in the leaves. 
A number of algorithms to build object subdivi- 
sions have been reported (Goldsmith and Salmon 
1987; Kingdon 1986). 
The dual of object subdivision is space subdivision, 
which subdivides space into disjoint subregions, re- 
cording the objects that inhabit each subset of 
space. The octree is a common type of space subdi- 
vision. Initially, the octree consists of only one 
node, representing the bounding volume contain- 
ing all of the objects in the scene, exactly the same 
as the root of a hierarchical extent tree. Using three 
splitting planes, one perpendicular to each of the 
three major axes, the bounding volume is divided 
into eight smaller volumes, each of these eight a 
child of the root (hence the term "octree"). Every 
object is placed in whichever child encloses it. Each 
of the children may be recursively subdivided. 
The bounding volumes associated with nodes are 
usually referred to as voxels, which is the three- 
dimensional analog of a pixel. Sometimes an object 
belongs in more than one voxel. In this case, either 
the object is split into new objects that do not 
belong in more than one node's voxel, or the object 
(more often a pointer to the object) is stored in 
both nodes (Fujimoto et al. 1986; Glassner 1984; 
Kaplan 1985). As with the hierarchical extent tree, 
the resulting octree has all of its objects stored at 
the leaves and none in the interior nodes. Unlike 
the hierarchical extent tree, a single leaf may con- 
tain more than one object. 
If a ray intersects the root node of an octree, it 
is recursively tested against the children of the in- 
tersected node. When a leaf node is intersected, 
all of the objects stored in it are tested for intersec- 
tion and the nearest, if any, is recorded. The octree 
allows testing nodes in the order that the ray passes 
through them, because it subdivides space into dis- 
joint regions. For this reason, the traversal algo- 
rithm can halt as soon as it finds a leaf in which 
an object is intersected. 

The splitting plane for each axis of subdivision in 
an octree may be any arbitrary plane within the 
current volume. Often the plane that is halfway 
between the limits of the volume, the spatial medi- 
an, is chosen. We refer to this as uniform space 
subdivision. Choosing the spatial median means 
that the positions of the planes need not be stored 
in each node because they can be generated from 
knowledge of the limits of the node. Depending 
on the traversal method, the storage saved may 
be large enough to warrant the additional re-com- 
putation of the spatial median during traversal. 
The two-way analog of the eight-way octree is the 
k-d tree or bintree (Samet 1984). The only difference 
is that where the octree divides a node into eight 
subnodes using three splitting planes, a bintree di- 
vides a node into only two subnodes using just 
one splitting plane. Any octree can be represented 
by a corresponding bintree. The subdivision of a 
node in an octree is represented by three levels 
of subdivision of a node in a bintree. Not all bintree 
subdivisions can be represented exactly by an oc- 
tree. It is often more convenient and more efficient 
to use bintrees for space subdivision (Kaplan 
1985). 
There is an important clarification to be made con- 
cerning the determination of whether a certain ob- 
ject belongs in a given node of an octree (or a 
bintree). An object belongs in a node only if the 
surface of the object intersects the node's box. The 
reason for this is that the point of intersection of 
a ray with an object cannot occur within a box 
that does not contain some part of the surface. 
Octrees and bintrees share a problem peculiar to 
space subdivision hierarchies. Depending on the 
implementation, an object may be stored in more 
than one node and may not be totally enclosed 
by any particular node. Therefore, an intersection 
test of a ray with an object may find an intersection 
point outside the volume of the current node. This 
is called fragmentation. 
The algorithm as described so far assumes that the 
computed intersection is the nearest point of inter- 
section and halts. However, the intersection point 
may be outside the volume of the current node, 
so we have no guarantee that there is not a closer 
intersection point with some other object in the 
scene that is in some other node. Because of this, 
only ray-object intersections that occur within the 
volume corresponding to the current node are valid 
and other intersections must be ignored until the 
appropriate node is examined. To avoid testing a 
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ray with the same object more than one time, a 
ray-object cache can be used. This technique was 
suggested by Amanatides and Woo (1987) and in- 
dependently by Arnaldi et al. (1987), who used the 
term "mailbox" to describe the cache. Caching has 
been incorporated into some ray tracing algo- 
rithms that use space subdivision (Cleary and Wy- 
viii 1988). 
To implement the ray-object intersection cache, it 
is sufficient to maintain for each object the identity 
of the most recent ray that has been found to inter- 
sect the object and the point at which the intersec- 
tion occurs. Subsequent intersection tests simply 
check to see if the object has been tested against 
the current ray and reuse the intersection data if 
it is available. For uniprocessors it might be rea- 
sonable to cache the intersection information with 
each object simply as an additional field stored 
with the object description. For a multiprocessor 
in which every ray is assigned to a different proces- 
sor, however, it would be necessary to have a sepa- 
rate cache for every ray or processor, because mul- 
tiple rays might be tested in parallel against a single 
object. A single cache keeping only the "most re- 
cent" intersection for an object might throw away 
information about an active ray if a second ray 
hit the same object. Adding enough fields to each 
object to cache intersections from every processor 
could prove costly in storage, so a hashing scheme 
or similar technique might be required to maintain 
the cache. We assume that some type of cache is 
used for all subdivision algorithms. 
In the following sections we review three particular 
space subdivision techniques in terms of their costs 
for construction, traversal, and storage. We then in- 
troduce two heuristics for constructing space sub- 
divisions and a neighbor link strategy for improv- 
ing traversal and storage costs. We report on simu- 
lations that test these ideas using bintree imple- 
mentations. 

2 Previous space subdivision 
algorithms 

Glassner gives one of the earliest published appli- 
cations of octrees to ray tracing using the spatial 
median splitting planes (Glassner 1984), with later 
papers elaborating on the technique (Glassner 
1987b, 1988). Glassner's method of construction 
is a simple breadth-first technique. Nodes which 
have more than a certain number of objects are 

subdivided until a predetermined size of tree is 
reached. The tree building is governed by two pa- 
rameters: the maximum number of nodes and the 
threshold value used for determining whether to 
split a node. In some cases, Glassner's algorithm 
will subdivide a smaller volume and leave a larger 
volume unsubdivided. It is likely that only a few 
rays go through the small volume, while many in- 
tersect the large volume. Therefore, subdividing the 
smaller gives very little performance gain. It is 
probably better to subdivide the larger. 
The crux of the problem is that Glassner's algo- 
rithm does not take into account any measure of 
the chance of a ray intersecting a node. Glassner 
presents an improved algorithm (Glassner 1987b) 
in which a node is subdivided if it contains more 
than a threshold number of objects, or if it is larger 
than a given volume. It seems that the choice of 
threshold is very critical to the performance of this 
algorithm. 
During ray tracing, the ray progresses through the 
volumes defined by the leaves of the octree, enu- 
merating the leaf nodes intersected by the ray in 
order of nearness to the ray origin. The objects 
within the enumerated leaves are tested for inter- 
section and the ray tracing algorithm halts at the 
first intersected object. Each time the ray searches 
for a new leaf of the octree, the traversal procedure 
starts at the root node and works down the tree 
node by node until a leaf is found. But two consecu- 
tive leaves along the path of a ray generally share 
several ancestor nodes. Glassner's approach ig- 
nores this. A simple optimization of Glassner's tra- 
versal algorithm would be to perform a binary 
search among the ancestors for the lowest common 
ancestor. Even with this optimization, we suspect 
that for really large octrees the double-logarithmic 
search time would still be a significant overhead. 
Perhaps the worst drawback to Glassner's traversal 
algorithm is the problem of ensuring that a "good"  
hash function exists, since this is the mechanism 
used for rapid accessing of nodes in the octree. 
This is not adequately described by Glassner for 
large octrees. A basic problem seems to be that 
Glassner's approach is geometric in nature and ig- 
nores the connectivity (or topology) implicit in the 
octree. 
Kaplan (1985) describes an implementation of a 
bintree very similar to Glassner's octree approach. 
A node is subdivided at the spatial median in each 
of the three coordinates and three levels of sub- 
nodes are created to represent the subdivision. The 
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traversal algorithm for a bintree is simpler because 
only a two-way decision is required at each node, 
instead of an eight-way decision required for each 
octree node. The bintree representation typically 
results in fewer leaves than the corresponding oc- 
tree, because each leaf in a bintree corresponds to 
at least one and possibly as many as four leaves 
in the corresponding octree. The construction of 
the tree is governed by the same criteria as 
Glassner's second method (Glassner 1987b). A 
node is subdivided if it contains more than a 
threshold number of objects, or if it is larger than 
a threshold size. Kaplan suggests using one as the 
threshold number of objects. The problems with 
this approach are the same as for Glassner's meth- 
od. 
Fujimoto et al. (1986) described what they consider 
to be a significant speed breakthrough with regard 
to space subdivision structures for ray tracing. 
Their ARTS (accelerated ray tracing system) imple- 
mentation is distinguished from Glassner's method 
by the speed of its traversal algorithm, as opposed 
to the uniqueness of its octree. The traversal algo- 
rithm uses incremental integer arithmetic similar 
to Bresenham's algorithm to enumerate the space 
through which a ray travels. This is a three-dimen- 
sional adaptation of the standard two-dimensional 
DDA (digital differential analyzer) used to draw 
lines. ARTS uses a uniform space subdivision with 
explicit storage of the octree as a tree. This method 
is superior to Glassner's hash table strategy in 
terms of storage, requiring about 16% less space 
according to the published storage requirements 
for both algorithms (MacDonald 1988). 
In addition to being more compact, the ARTS 
method has faster traversal times because of the 
explicit links to the children and because space is 
partitioned into small voxels of a fixed size. The 
smallest leaf in the octree is a power of two times 
the size of the underlying voxels. The splitting 
planes of the octree coincide with faces of the un- 
derlying voxels, allowing a straightforward map- 
ping from an underlying voxel to a leaf node. The 
ARTS system traverses upwards in the octree from 
the previous leaf only as far as required and then 
down to the adjacent leaf. It is claimed that this 
can be done quite efficiently using byproducts of 
the incremental integer arithmetic algorithm. 
We see three basic bottlenecks in the published 
descriptions of these space subdivision algorithms: 
the construction of optimal hierarchies given a 
fixed number of nodes, the traversal time as rays 

are traced through volumes, and the storage costs 
associated with individual nodes. These issues a r e  

addressed in turn in the following sections. 

3 The surface area heuristic 

The construction of the bintree or octree is typi- 
cally insignificant compared to the computation 
spent in actually traversing the tree to determine 
ray-object intersections. Therefore it would be ad- 
vantageous to devote a greater effort to creating 
a more efficient tree, under the assumption that 
the extra time would then be recovered during tree 
traversal. 
A heuristic approach for bintree construction can 
be derived from the observation that the number 
of rays likely to intersect a convex object is roughly 
proportional to its surface area, assuming that the 
ray origins and directions are uniformly distributed 
throughout object space and that all origins are 
sufficiently far from the object (Stone 1975). This 
heuristic has been used to provide a measure of 
the likelihood that a ray will intersect a bounding 
volume in a hierarchical extent tree (Goldsmith 
and Salmon 1987) and in octrees (Cleary and Wy- 
viii 1988). We derive similar predictions for the 
number of objects, interior nodes, and leaves inter- 
sected in a space subdivision hierarchy and use 
these to govern the construction of the tree. 
We assume that all rays intersect the bounding vol- 
ume for the entire scene. Thus, every ray intersects 
the root voxel. We further assume that the proba- 
bility of a ray intersecting any interior or exterior 
node is equal to the surface area of the node di- 
vided by the surface area of the root. This results 
in the following intersection estimates. 
no. of interior nodes hit per ray 

Ni 

= ~ SA (i)/SA (root) 
i = 1  

no. of leaves hit per ray 

N~ 

= ~ SA(1)/SA(root) 
/ = 1  

no. of objects tested for intersection per ray 

Nz 

= ~ SA (1). N (l)/SA (root) 
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where the various quantities are 

N~ = no. of interior nodes 

Nl = no. of leaves 

N (1)= no. of objects stored in leaf/ 

SA (i) = surface area of interior node i 

SA (1) = surface area of leaf node l 

Given these measures of the node, leaf, and object 
visists performed during traversal of the tree, an 
estimate of the cost of the tree can be obtained. 
The costs associated with these three components 
depend on the particular implementation of the 
traversal algorithm and may be determined theo- 
retically or experimentally. The total cost of a par- 
ticular tree is determined from the three sums 
above and the three related costs, which are as- 
sumed to be constants for a given implementation. 

This is expressed as cost of tree 

Ni Nz Nz 

Ci" ~ SA (i) + C,. ~ SA (l) + Co" ~ SA (1). N (1) 
i = 1  / = 1  l = l  

i 

SA(root) 

where the new quantities introduced in the equa- 
tion are 

Ci = cost of traversing an interior node 

Ct = cost of traversing a leaf 

Co = cost of testing an object for intersection 

This cost function assumes that rays do not inter- 
sect any objects, but also represents an upper 
bound for rays that do intersect objects. The cost 
function implies that if an object occurs in two 
or more leaves, it is tested for intersection each 
time a ray intersects one of these leaves. Therefore 
a given object may be tested against the same ray 
several times. As observed before, this is usually 
unacceptable, and is avoided by caching objects 
intersected against a ray so that each object is 
tested at most once per ray. The cost function given 
above must be modified to account for this caching 
based on assumptions about  the scene. 
To derive the correct cost function, we require a 
measure of the probability that a ray intersects at 
least one leaf from the set of leaves within which 
a particular object resides. This is equivalent to 
determining the probability that a ray intersects 
the volume defined by the union of the set of leaves. 
Because this union may be nonconvex, the proba- 
bility of ray intersection must be estimated by find- 

ing a convex region to approximate the nonconvex 
region. A simple approximation is the sum of the 
areas of the projection of the set onto the six faces 
of the root bounding volume divided by the root 
bounding volume's surface area. For a convex ob- 
ject, this measure is exactly equal to its surface 
area divided by the root bounding volume's surface 
area. We can us this approximation for the set of 
leaves for all objects, whether the set of leaves for 
each object is convex or not. This makes the object 
portion of the cost of a tree object cost per ray 

No 

Co. Z SAset(S,(o)) 
o = 1  

SA(root) 

where the new quantities are 

No = no. of objects 

Sz (o)= leaves in which object o resides 

SA set (s)= approximate surface area of set s 

If we assume that the above costs are accurate, 
we can use these equations to govern the construc- 
tion of the tree, choosing nodes to subdivide so 
as to minimize the total cost of the tree for a given 
number of nodes in the tree. We call this rule the 
surface area heuristic. It generalizes Glassner's use 
of a minimum size below which nodes are not sub- 
divided. 
The validity of the surface area heuristic was tested 
using a simulation. A set of 100 boxes with random 
sizes and positions was created, where each box 
was a standard rectangular parallelepiped and 
100000 random rays were traced through the 
bounding volume enclosing the boxes. These rays 
had origins outside the bounding volume and were 
directed at the bounding volume. The statistics re- 
corded are presented in graphical form in Fig. 1, 
where each point represents the surface area of a 
box and the number of rays which intersected the 
box. The number of rays intersecting a box is thus 
shown to be directly proportional to its surface 
area to within statistical variation. 
The graph in Fig. 1 illustrates that the number of 
rays intersecting a box is proportional to its surface 
area, assuming random rays. However, this does 
not prove that the estimates of interior and leaf 
nodes intersected are correct, because the search 
is truncated as soon as an intersection is found. 
The estimate of the number of object tests also 
cannot be assumed to be proven because that esti- 
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mate is derived from an approximation of a possi- 
bly concave set of leaves by a convex volume. To 
test the validity of these estimates, a further simula- 
tion was performed. 
Random scenes of objects and random bintrees 
were created. These were used to trace random rays 
as in the previous simulation. The estimated 
numbers of interior nodes, leaves, and objects 
visisted were compared with the actual numbers 
from the ray tracing. Each scene contained a ran- 
dom number of objects between 10 and 500, with 
random distribution in size from 0.01 to 1. The 
bintree created for the scene contained a random 
number of nodes between 10 and 1000, in which 
nodes were subdivided in random order along a 
random axis at a random position within the corre- 
sponding voxels. In all 529 random scenes were 
created and 10000 rays were traced for each scene. 
Table 1 summarizes the results of the simulation. 
In all cases the actual number is proportional to 
the estimated number. In the case of the number 
of interior nodes and leaves intersected, the esti- 
mates actually provide upper bounds rather than 
an average case estimate. This is understandable, 

as the derivation of the estimates assumes that the 
rays hit no objects. The constants of proportionali- 
ty may therefore be used in conjunction with the 
surface area heuristic to give a more accurate esti- 
mate of the average number of interior nodes and 
leaves intersected. The estimate of the number of 
objects intersected was shown to be quite accurate, 
with a constant of proportionality close to one. 
One reason that this provided an average case esti- 
mate, rather than an upper bound, is that there 
are too few objects in the scene. Truncating the 
search as soon as an intersection was found prob- 
ably did not save many intersection tests, because 
each ray may have intersected zero or one objects. 
Therefore the estimate provided an average case 
estimate. With denser scenes, the object intersec- 
tion estimate should probably be scaled down in 
the same way as the interior and leaf node esti- 
mates. 

4 Spatial median versus object 
median 

In all of the octree and bintree constructions the 
position of the splitting planes is arbitrary, even 
if the surface area heuristic is employed. Tradition- 
ally, the splitting plane is chosen as the spatial me- 
dian, resulting in a uniform space subdivision. 
Heckbert  (1982) employed a median split algorithm 
that chooses a splitting plane based on the object 
median in a k-d tree, where the objects are color 
triplets (single points). The object median is the 
splitting plane that places one half of the objects 
on each side of the plane. The cost estimate devel- 
oped using the surface area heuristic can also be 
applied to selecting "good"  splitting planes in this 
extended model. 
In the following discussions of splitting planes, we 
will only consider the bintree. We assume that only 
major planes are used as splitting planes and we 
ignore the possibility of an object straddling a split- 

Table 1. Results of simulation 

Quantity Actual SD Correlation coefficient 

No. of rays intersecting box 27.5 x surface area 5.2% 0.995 
No. of interior nodes intersected 0.752 x estimate 12.7% 0.945 
No. of leaves intersected 0.831 x estimate 14.1% 0.900 
No. of object tests 1.03 x estimate 9.5% 0.985 
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ting plane (a case of practical importance, but one 
we ignore nevertheless). We have to choose a pa- 
rameter b to position the splitting plane, where 
b = 0 corresponds to the lower limit of the splitting 
plane and b = 1 is the upper limit. Choosing b = 0.5 
is equivalent to selecting the spatial median. 
Let us look at the cost as a function of this parame- 
ter b. We observe that the internal node and leaf 
node components of this cost savings function are 
constant with respect to b. For the purposes of 
minimizing cost, we can minimize the function 

f (b) = LSA (b). L(b) + RSA (b). ( n -  L(b))-  SA . n 

where n is the number of objects in the node, L(b) 
is the number of objects to the left of the plane 
at b, and n-L(b)  is the number to the right of 
the plane because of our assumption that no ob- 
jects straddle the plane. The surface area of the 
left and right subnodes are LSA(b) and RSA(b), 
respectively, and the surface area of the node itself 
is SA. The first term represents the probability that 
a ray intersects the left subnode multiplied by the 
number of intersection tests performed in the left 
subnode. The second term is a similar quantity for 
the right subnode. The SA.n term is the amount 
of work required if the node were not subdivided 
and thus is an amount of work saved by changing 
the original node from a leaf to an internal node, 
hence the minus sign. This last quantity is a con- 
stant with respect to b, so it may be removed from 
the function, resulting in the following function to 
be minimized: 

f (b) = LSA (b). L(b) + RSA (b). (n - L(b)) 

To find a "good"  splitting plane, one might evalu- 
ate this function at several different positions and 
choose the position with the minimum value. How- 
ever, let us examine the behavior of this function. 
The value of this function at the spatial median 
is 

f(O.5)=n.LSA(0.5) 

because LSA (0.5) = RSA (0.5). Curiously enough, 
the value of this function at the object median, 
where half of the objects are on each side of the 

splitting plane and L(b)= n,  is exactly the same 
z 

(LSA (b) + RSA (b)). n ~=n.LSA(0.5)  

because LSA(b)+RSA(b) is a constant indepen- 
dent of b, which means that we can substitute 
LSA(O.5)+RSA(0.5), which is 2.LSA(0.5). This 
shows that picking the object median results in 
the same gain as picking the spatial median. Intui- 
tively, one might assume that picking the object 
median would be a reasonable heuristic for choos- 
ing an arbitrary splitting plane, but the above ob- 
servation indicates that it is equivalent to the stan- 
dard spatial median subdivision. 
The optimum heuristic is to pick the splitting plane 
which minimizes f(b). Differentiating with respect 
to b gives 

f '  (b) = LSA' (b). L(b) + LSA (b). E (b) + n. RSA' (b) 
- RSA'(b). L(b) -  RSA(b). E(b) 

which can be simplified by substituting -LSA'(b)  
for RSA' (b) because LSA (b) + RSA (b) is a constant, 
giving 

f '  (b) = (2. L(b) -  n). LSA' (b) + (LSA (b) 
-RSA(b)).E(b).  

Since L(b) is a discontinuous function, E(b) is not 
defined. However, for the purposes of minimization 
off(b), we can assume that E (b) is always nonnega- 
tive (the number of objects stored in the left sub- 
node cannot decrease as b increases). 
Let us investigate the case where the object median 
lies at some point b<0.5. To the left of the object 

median, f '(b) is negative, because L(b)<~- and 

LSA (b)< RSA (b). To the right of the spatial medi- 

an, f '(b) is positive, because L(b )<~  and LSA(b) 

> RSA (b). Therefore the minimum must occur be- 
tween the object median and the spatial median 
in the case where the object median is to the left 
of the spatial median. A similar argument can be 
used for the other case where the object median 
is to the right of the spatial median, thereby prov- 
ing that for any node and set of objects within 
it, the optimum splitting plane occurs between the 
object median and the spatial median, reducing the 
required search range. 
The optimum splitting plane actually occurs within 
this reduced range and at the upper or lower edge 
of one of the objects within the range, rather than 
in the middle of "white space." To take advantage 
of this reduced range, one must first find the object 
median, which is easy if the objects are sorted, but 
otherwise requires a search of the space. If one 
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does not want to perform this search, one can de- 
termine how many objects are on each side of the 
spatial median, thereby determining on which side 
of the spatial median the object median occurs. 
This allows one to cut the search space in half. 
In the cases of small numbers of objects, one can 
try splitting planes at the limits of each object with- 
in the appropriate half and record the maximum. 
For large numbers of objects, one might try a small 
set of splitting planes at equally spaced intervals, 
or even randomly selected intervals, within the ap- 
propriate half. Alternatively, a cheap heuristic is 
to select the splitting plane midway between the 
object median and the spatial median. 
Because of space limitations, we have not dealt 
with objects spanning the splitting plane. Our re- 
suits can be extended to handle this case as well, 
although the analysis is more complicated (Mac- 
Donald 1988). 

5 Comparisons 

Having verified the surface area metric as reasona- 
bly accurate, different construction techniques for 
space subdivision were investigated. Four new con- 
struction algorithms, as well as Kaplan's algorithm, 
were implemented for purposes of comparison and 
evaluation. All algorithms were implemented on 
bintrees. The construction algorithms consist of 
two algorithms in which the spatial median is cho- 
sen as the splitting plane, two algorithms in which 
the splitting plane can be in an arbitrary position, 
and Kaplan's algorithm as a standard of compari- 
son. These algorithms are the following. 

Kaplan's algorithm (zero degrees of freedom in the 
splitting plane selection). This is simply Kaplan's 
algorithm with a threshold value of one. Nodes 
are subdivided until they contain zero or one ob- 
jects, in a breadth-first order. The maximum height 
of the tree was set to 30, which was felt to be large 
enough not to restrict the growth, yet provide a 
practical bound. 

Arbitrary acyclic (two degrees of freedom). Splitting 
planes can be anywhere within the node, and a 
node may be divided along any of the three axes. 
The optimal splitting plane is determined by sam- 
pling at nine equally spaced intervals within the 
node, recording the maximum value of the function 
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given previously. A node is subdivided along 
whichever axis provides the greatest gain and 
nodes are subdivided according to highest gain. 
(Nine is an arbitrary number chosen to approxi- 
mate the optimal splitting plane, yet not incur un- 
reasonable amounts of computation by finding it 
exactly during the simulation. We believe that the 
10% accuracy achieved by this is sufficient for pur- 
poses of this study.) 

Arbitrary cyclic (one degree of freedom). Same as 
arbitrary acyclic, except that the first level of subdi- 
vision always occurs along the x axis, the second 
along the y axis, the third along the z axis, cycling 
through the three axes. 

Spatial median acyclic (one degree of freedom). 
Same as arbitrary acyclic, except that the spatial 
median is always chosen as the splitting plane. 

Spatial median cyclic (zero degrees of freedom). 
Same as arbitrary cyclic, except that the spatial 
median is always chosen as the splitting plane. 

These algorithms were encoded as simply as possi- 
ble without any attempt to optimize the code. It 
was felt that it was more important that the code 
be correct, and our emphasis was verification, rath- 
er than efficiency. Statistics on the trees were re- 
corded during the construction of the tree. The sta- 
tistics include the number of interior nodes, the 
number of empty leaves, the number of nonempty 
leaves (containing one or more objects), the esti- 
mated number of leaves visited, estimated number 
of interior nodes visited, and the estimated number 
of objects tested for intersection. 
The ultimate goal of the strategies for building the 
space subdivision structures is to improve perfor- 
mance in actual ray-tracing systems. The perfor- 
mance should therefore be evaluated with scenes 
that represent a reasonable sample of all scenes 
subjected to ray tracing. Five scene types proposed 
by Kingdon (1986) were used. The object distribu- 
tions are based on three simple random number 
generators: U 3, which selects a random point with- 
in a unit sphere; U ~ which selects a random point 
on the unit sphere; and U e, which returns the out- 
put of U ~ scaled by a gaussian distributed random 
number with a mean of 0 and variance of 1. The 
five scene types used in the simulations were the 
following. 
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Small spherical. A set of triangles whose first ver- 
tices are U 3 distributed in space and whose other 
two vertices are 0.010. U ~ distributed offsets from 
the first point. 

Large spherical. A set of triangles whose first ver- 
tices are U 3 distributed in space and whose other 
two vertices are 0.333. U ~ distributed offsets from 
the first point. 

Small gaussian. A set of triangles whose first ver- 
tices are 0.333. U e distributed in space and whose 
other two vertices are 0.010. U ~ distributed offsets 
from the first point. 

Large gaussian. A set of triangles whose first ver- 
tices are 0.333-U e distributed in space and whose 
other two vertices are 0.333. U ~ distributed offsets 
from the first point. 

Three random vertices. A set of triangles whose ver- 
tices are U 3 distributed in space, creating a set of 
dense, interpenetrating triangles. 

The small spherical and small gaussian scenes con- 
tain triangles that are roughly ~ times the width 
of the scene, while the large spherical and large 
gaussian scenes contain triangles approximately 
one-sixth the width of the scene, attempting to sim- 
ulate the limits of object sizes in typical scenes. 
The gaussian distributions provide a cluster of ob- 
jects, while the spherical distributions provide 
more spread out objects. Six instances of each scene 
were used, varying only in the number of objects 
comprising the scene. The numbers used were 256, 
512, 1024, 2048, 4096, and 8192. The maximum 
number of nodes was set according to the amount 
of time and memory required and ranged from 
2000 to 8000 nodes, depending on the scene type. 
Also, for some scene types, only the first five scene 
sizes were used, to limit computer usage. 
Data from the simulations were analyzed to com- 
pare the various algorithms. Figure 2 shows a 
graph of the results for 1024 small spherical objects. 
The other cases were similar, but are omitted from 
this paper due to space limitations 
In summary, the estimated number of nodes and 
leaves visited for a given scene were very similar 
over all five algorithms, as is evident from examin- 
ing their graphs. Overall, the arbitrary acyclic algo- 
rithm performed slightly better than the rest in 
terms of number of nodes and leaves visited. How- 
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Fig. 2. Summary of simulations. $, Arbitrary acyclic; 
o, arbitrary cyclic; E3, spatial median acyclic; I ,  spatial 
median cyclic; v,  Kaplan (spatial median) 

ever, the number of objects intersected varied wide- 
ly over the different construction algorithms. For 
this reason and because the object cost is typically 
higher than the other two costs, let us concentrate 
on the number of objects intersected in order to 
evaluate the algorithms' performance. 
For the small spherical and small gaussian scene 
types, the arbitrary acyclic algorithm performed 
the best, providing up to three orders of magnitude 
reduction in the number of objects tested for inter- 
section. For the large spherical and large gaussian 
scene types, the arbitrary acyclic algorithm was 
also the best, but only up to one order of magni- 
tude better. However, for the scenes consisting of 
three random vertices, the Kaplan method per- 
formed best. The general rule seems to be that the 
arbitrary acyclic algorithm performs best for scenes 
with nonoverlapping small objects, while Kaplan's 
performs best for denser scenes with interconnected 
objects. 
The explanation for this behavior is that the arbi- 
trary acyclic algorithm is a greedy algorithm, gov- 
erning the subdivision by only looking one step 
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in advance. If subdividing a node is not immediate- 
ly advantageous, then it is not subdivided, even 
if subjecting the node to two levels of subdivision 
would be advantageous. Kaplan's algorithm, by 
virtue of its breadth-first nature and an inability 
to evaluate the benefit of subdividing a node, may 
subdivide a node many times, resulting in a gain 
where the arbitrary acyclic algorithm would not. 
These observations indicate that a hybrid of the 
arbitrary acyclic and Kaplan's algorithms might 
provide optimum performance in all scene types. 
A hybrid implementation was performed in which 
the arbitrary acyclic algorithm was applied to a 
node first to determine an optimum splitting plane. 
If it does not find a speed gain above a certain 
threshold dependent upon the surface area of the 
node, then the spatial median is chosen. The coor- 
dinate is dependent on the level of the node, similar 
to Kaplan's method except that nodes are only 
subdivided with one level of subdivision at a time 
(rather than three levels). This forces the algorithm 
to assume that subdividing a node results in a de- 
crease in cost, even if the one-step look ahead indi- 
cates an increase. Thus, a node that the original 
algorithm does not find advantageous to subdivide 
may be subdivided by the hybrid algorithm, result- 
ing in a tree with a higher cost than if the node 
remained a leaf. The children of this node may 
then be subdivided, possibly resulting in an overall 
decrease in the cost of the tree. 
This process is used, as in the other algorithms, 
only to determine the splitting plane, splitting coor- 
dinate, and estimated gain if the node were to be 
subdivided. The selection of the next node to subdi- 
vide is, as in the arbitrary acyclic algorithm, the 
node that has the highest estimated gain. When 
the hybrid algorithm resorts to selecting the spatial 
median, the gain associated with this split is set 
at the threshold, rather than the actual value, 
which would be lower. This hybrid algorithm was 
run on each of the five scene types containing 1024 
objects, except for the scene type containing three 
random vertices, which had only 64 objects for effi- 
ciency. It performs better overall than any of the 
other algorithms (it was outperformed slightly by 
the arbitrary acyclic algorithm in the case of a large 
gaussian scene). 
It is interesting to note that the portions of the 
graphs pertaining to Kaplan's algorithms often 
contain line segments and abrupt changes of slope. 
These are due to the fact that after some point 
in the construction of the tree, Kaplan's algorithm 

essentially builds the tree level by level. The line 
segment portions correspond to individual levels, 
and the abrupt changes in slope correspond to the 
filling of a level. 
At the end of each simulation, the total number 
of object instances (number of objects stored at 
the leaves) was recorded. The arbitrary algorithms 
produced near optimum numbers, that is, only 
10% or 20% more object instances than objects, 
while Kaplan's and the other two spatial median 
algorithms produced trees with up to ten times as 
many object instances as objects. The reason for 
this is the implicit motivation to keep objects in 
as few leaves as possible, provided by the cost func- 
tion used in selecting the splitting plane for arbi- 
trary subdivision. 

6 Storage 

The simplest and most obvious method of storing 
the bintree (octree) is as an explicit tree with two 
(eight) pointers per node. This has a large space 
requirement, motivating the more compact octree 
schemes of Glassner and ARTS. 
The storage method has a marked effect on the 
speed of traversing a tree. In ray tracing the inter- 
nal nodes of a space subdivision are not interesting. 
All useful information is in the leaves. The traversal 
cost can be decreased by storing links to neighbors 
on each of the six faces of each leaf. Samet (1984) 
describes such links in quadtrees, called ropes, and 
credits Hunter and Steglitz for their invention. A 
more recent paper also discusses neighbor-finding 
(Samet and Webber 1988). For the purposes of the 
following discussion, let each face of each leaf have 
exactly one neighbor, defined as the smallest node 
(interior or leaf) whose voxel's surface totally en- 
closes the face of the leaf in question. By this defini- 
tion, the neighbors of a leaf are not necessarily 
leaves. However, this definition guarantees that 
each leaf has exactly one neighbor per face (except 
leaves on the boundary of the scene, which have 
none for outer faces). 
During traversal of the structure it is necessary to 
determine the face exited. The neighbor link of a 
face is followed and if the neighbor is a leaf, pro- 
cessing of the objects within the leaf is performed. 
If the neighbor is an interior node, then the exit 
point of the current leaf must be computed and 
used to descend the neighbor's subtree to find the 
appropriate leaf. This strategy eliminates all up- 
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ward traversal of the tree and some downward tra- 
versal. In general, when a ray travels from one area 
to an area of equal or lower subdivision, the neigh- 
bor is a leaf and the hierarchy traversal cost is 
zero. It is only when traveling to an area of higher 
subdivision that there is any hierarchy cost. In this 
case the cost is less than the corresponding cost 
of the methods described earlier because the up- 
ward traversal to the common ancestor is elimi- 
nated and some of the downward traversal may 
also be avoided (about equal to the upward traver- 
sal eliminated). Therefore, the neighbor links re- 
duce the hierarchy cost significantly, at the added 
expense of six pointers per leaf. 
A further modification of the neighbor links is to 
redefine the neighbors of a face as all leaves adja- 
cent to that face. Now, all neighbors are leaves, 
but any given face may have more than one neigh- 
bor, which requires more memory per leaf than 
the previous link strategy. However, in the case 
of spatial median subdivision, the amount of mem- 
ory required is now less than 12 pointers per leaf 
on average, only twice that of the former method. 
The average of 12 pointers per leaf stems from the 
observation that, although some faces have a large 
number of neighbors, others have only one neigh- 
bor, with the average being two pointers per face. 
This is illustrated in Fig. 3, which shows n + 1 faces, 

2.n 
and 2- n links, and hence n +I-  links per leaf, which 

means fewer than two pointers per face. With arbi- 
trary subdivision, the number of pointers per face 
may be higher, because Fig. 3 no longer covers all 
possible subdivision cases. 
The storage of the neighbors for a leaf consists 
of six integers representing the number of neigh- 

bors of each face, plus a list of pointers to the 
neighbors of each face. Alternatively, the neighbors 
could be stored in a two-dimensional bintree (or 
quadtree) to quickly determine the appropriate 
neighbor for a given exit point. In fact, such a quad- 
tree is implicit in an octree already. A single neigh- 
bor link to a node that has further subdivision 
is sufficient to find all adjacent neighbors because 
the standard quadtree search can be performed on 
the octree structure simply by ignoring the coordi- 
nate whose value is known (i.e., if the neighbor 
is being sought across a "positive" x face, then 
only the "negative" x nodes in the octree are rele- 
vant). 
The complete neighbor links scheme eliminates the 
hierarchical traversal altogether, because finding 
the next node only requires following the links, 
but it introduces the additional cost of determining 
which link to follow if a leaf has more than one 
neighbor on a given face. We assume that the 
number of neighbors of a leaf is proportional to 
its surface area. 
Better search performance may result from the use 
of a two-dimensional bintree to search for the 
neighbors or by performing a binary search on the 
sorted neighbor lists. Either of these two methods 
reduces the expected number of tests per face to 
log n complexity. The form of the tests is single 
comparisons in the case of the two dimensional 
bintree, rather than four comparisons. The ex- 
pected number of comparisons is therefore propor- 
tional to 

Nz 
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Fig. 3. Neighbor  links in octree 
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Although it appears that the neighbor links ap- 
proach may have large space requirements, there 
is a memory-speed tradeoff that can be invoked. 
Instead of defining links to occur at all leaves in 
the tree, one can define the links to occur at all 
interior nodes that only have leaves for children. 
This decreases the extra space to approximately 
one-eighth of the original space requirements in 
the octree case, or one half in the case of a bintree. 
This method incurs the same traversal cost as the 
original neighbor links plus one additional upward 
traversal per leaf and possibly one downward tra- 
versal. 
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Table 2. Number of parent-to-child and child-to-parent traversals recorded from the simulation 

Scene type Up/down traversals, i000 nodes 

Up Down Neighbors down 

1000 Small spherical 36.35589981 36.38169861 9.951199532 
1000 Large spherical 15.85369968 20.09070015 8.987500191 
1000 Small gaussian 33.94269943 33.94810104 10.09840012 
1000 Large gaussian 24.50469971 25.91119957 8.954000473 
64 3-Random verts 15.17660046 19.25169945 9.043399811 

More generally, the linking can be defined only 
for the set of nodes at a particular height above 
the leaves. For example, links may be stored in 
all nodes that are a fixed distance n above the dee- 
pest leaf in their subtree. The case n=  1 corre- 
sponds to the above method of storing at all nodes 
that only have leaves for children. The amount of 
memory required is proportional to (~)" in the case 
of an octree, yet the extra traversal cost is only 
proportional to n. A suitable value of n results in 
an appropriate tradeoff between space and the ad- 
ditional up and down traversals. For practical 
cases n can be chosen so that the extra indirection 
to follow links is modest and the additional storage 
for links is vanishingly small. 
A neighbor links strategy was implemented, using 
the simple definition of neighbors which gives ex- 
actly one neighbor per face, as opposed to the com- 
plete neighbor links strategy. One instance of each 
of the five scene types was used to build an arbi- 
trary acyclic type bintree, with the neighbor links 
for each leaf computed. All scenes had 1000 objects 
and the bintrees constructed contained 1000 nodes. 
After building the bintrees, 10000 random rays 
were traced and the number of parent-to-child and 
child-to-parent movements were recorded for each 
of the conventional traversal algorithms and the 
neighbor links method. These numbers indicate the 
savings in traversal cost by using the neighbor links 
strategy. 
Table 2 summarizes the number of parent-to-child 
and child-to-parent traversals recorded from the 
simulation. The second and third columns give the 
number of up and down links followed for the con- 
ventional traversal algorithms. The fourth column 
gives the number of down links followed for the 
neighbor link algorithms (there are no up links fol- 
lowed). If it is assumed that the cost of a single 
upward traversal is equivalent to a single down- 
ward traversal, then these numbers show that the 
neighbor link scheme decreases the traversal cost 
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to between one-seventh and one-quarter of the cost 
of an ARTS-type traversal method. 
Storage of the lists of objects that belong in each 
leaf have large space requirements. Glassner stores 
all the object lists in a single array of object indices, 
where each list ends with a "nil" index. Glassner's 
scheme provides a separate object list for eachleaf. 
A more compact scheme would allow more than 
one leaf to point to the same object list. In cases 
where there are many duplicate leaf lists, this 
scheme would result in significant memory savings. 
There would be an added cost during the traversal 
phase in order to identify duplicate lists but only 
one extra level of indirection. Even more savings 
would result if lists that are subsets of other lists 
are identified, and a pointer to the beginning of 
a sublist within a larger list used to avoid explicit 
storage of the sublist. The larger list would have 
to be organized so that the sublist is at the end. 
The most compact scheme is to partition the set 
of objects into equivalence classes, where each 
equivalence class is a set of objects that belong 
in the same set of leaves. In the worst case, each 
equivalence class consists of one object, in which 
case this scheme is equivalent to the above many- 
to-one linking with the overhead being a single 
extra level of indirection. The object list for a leaf 
is thus a list of equivalence classes, rather than 
a list of object indices. Although the computation 
of the equivalence classes might be quite expensive, 
it is only computed once when the space subdivi- 
sion is constructed. The savings in space might well 
outweigh the extra computing time. 

7 Discussion 

The cost of ray tracing using space subdivision 
trees can be estimated by the number of interior 
nodes, leaves, and objects visited per ray, and the 
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respective costs of these visits. This paper reports 
new construction algorithms which represent con- 
siderable improvement over conventional methods 
in terms of reducing the number of nodes, leaves, 
and objects visited by a ray. The algorithms employ 
the surface area heuristic and a heuristic for esti- 
mating the optimal splitting plane located between 
the spatial median and the object median. 
The efficiency of traversal has been improved by 
attacking its two main costs, the processing of inte- 
rior nodes (a major improvement) and the compu- 
tation of the ray exit point (a minor improvement). 
The neighbor link strategy has been employed to 
significantly reduce the number of interior nodes 
visited compared to Glassner's algorithms. 
Many of the ideas in this paper should carry over 
to hierarchical extent trees. All of the ideas should 
be examined with respect to higher-dimensional 
data structures, dynamic data structures, and mul- 
tiprocessor algorithms. We suggest a few areas for 
future research in our closing remarks. 
In computer animation, it is common for scenes 
to change from frame to frame, as objects appear, 
disappear, and change position, shape, color, and 
other attributes. The data structures representing 
the scene must be updated to reflect these changes. 
An important issue when choosing a data structure 
to represent scenes is whether the structure allows 
dynamic modification as the scene changes, and 
whether the dynamic modification is more efficient 
than rebuilding a static structure each time the 
scene changes. The restriction to static structures 
is not unreasonable, as static structures are appro- 
priate in cases where the viewpoint changes often 
compared to the objects in the scene. But when 
this is not the case, our algorihms must be extended 
to accommodate dynamic changes. One specific 
method of dealing with dynamic objects is to treat 
time as simply another dimension, with the data 
structure subdividing the objects in 4-space. 
Glassner (1988) has reported on such an ap- 
proach. 
Our discussion has not addressed issues related to 
multiprocessors. Other authors have suggested a 
variety of techniques for utilizing multiprocessors 
in ray tracing. We believe that many of our tech- 
niques can be applied here as well. 
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