
---. su,,d
 mlputcr

Heuristics for
ray tracing using
space subdivision

J. D a v i d M a c D o n a l d x a n d
K e l l o g g S. B o o t h 2

1 Visual Edge Software Ltd., Montreal,
Quebec, Canada
2 Computer Graphics Laboratory, Department
of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

Ray tracing requires testing of many rays
to determine intersections with objects. A
way of reducing the computation is to or-
ganize objects into hierarchical data struc-
tures. We examine two heuristics for space
subdivisions using bintrees, one based on
the intuition that surface area is a good
estimate of intersection probability, one
based on the fact that the optimal splitting
plane lies between the spatial median and
the object median planes of a volume. Tra-
versal algorithms using cross links be-
tween nodes are presented as generaliza-
tions of ropes in octrees. Simulations of
the surface area heuristic and the cross link
scheme are presented. These results gener-
alize to other hierarchical data structures.

Key words: Octree - Ray tracing - Space
subdivision - Splitting plane - Surface
area

1 Introduction

Ray tracing is a popular algorithm for computer
rendering of synthetic images (Glassner 1987a).
The main reason why the use of ray tracing is so
widespread is its simplicity of coding and the com-
parative ease with which ray tracing renders many
realistic effects including shadows, penumbrae, re-
flection, refraction (transparency), and motion blur
(Cook et al. 1984). The principal drawback of ray
tracing is its comparatively high computational cost,
which is due primarily to the high occurrence of
one basic operation, the ray-scene intersection test.
The simplest, brute-force method of determining
the ray-scene intersection is to test the ray against
each object, remembering which object, if any, has
the nearest point of intersection. This has been
vastly improved with the use of scene structuring
(Fujimoto et al. 1986; Glassner 1984, 1987b, 1988;
Goldsmith and Salmon 1987; Kaplan 1985; Kay
and Kajiya 1986; Scherson and Caspary 1987; Ru-
bin and Whitted 1980; Weghorst et al. 1984), which
reduces the number of ray-object intersection tests
required.
Scenes are modeled with a variety of different im-
plicitly and explicitly defined objects and surfaces.
They range from simple objects, such as spheres,
ellipses, triangles, polygons, and parallelepipeds, to
more complex surfaces such as cubic patches,
spline surfaces, and implicit functions. For all but
the simplest of these, an intersection test of a ray
with the object is a nontrivial computation. To
speed up the intersection test, a bounding volume
is placed around the object. The bounding volume
is typically a very simple type of object with an
easy intersection test, such as a sphere or a paralle-
lepiped with sides perpendicular to the major axes.
In order to determine whether a ray intersects a
particular object, the ray is first tested against the
object's bounding volume. If the ray does not inter-
sect the bounding volume, it does not intersect the
object inside. Otherwise, the ray must be tested
against the object in the usual manner. A common
type of object for bounding volumes is a rectangu-
lar parallelepiped or box with each side perpendic-
ular to a major axis.
The notion of a bounding box generalizes to the
idea of scene structuring with a hierarchical data
structure. There are two main classes of hierarchy
applicable to ordering the scene, one a dual of the
other. Object subdivision clusters the objects com-
posing a scene, recording the space that each object
inhabits. Space subdivision subdivides space, re-
cording the objects that inhabit each region of
space.

The Visual Computer (1990) 6:153-166
�9 Springer-Verlag 1990 1 5 3

('3:lsual ,

A) I I l D I I { { r

A hierarchical extent tree is a recursive subdivision
of objects. The root of the tree corresponds to a
bounding volume containing all of the objects in
the scene. The children of a node correspond to
a set of bounding volumes that divide the objects
contained in the node's bounding volume. When
the number of objects in a node's bounding volume
is one, the node is given a single child where the
object is actually stored. Although reference is
made to objects enclosed by, or contained within,
a node's bounding volume, it should be observed
that objects are actually only stored in the leaves.
A number of algorithms to build object subdivi-
sions have been reported (Goldsmith and Salmon
1987; Kingdon 1986).
The dual of object subdivision is space subdivision,
which subdivides space into disjoint subregions, re-
cording the objects that inhabit each subset of
space. The octree is a common type of space subdi-
vision. Initially, the octree consists of only one
node, representing the bounding volume contain-
ing all of the objects in the scene, exactly the same
as the root of a hierarchical extent tree. Using three
splitting planes, one perpendicular to each of the
three major axes, the bounding volume is divided
into eight smaller volumes, each of these eight a
child of the root (hence the term "octree"). Every
object is placed in whichever child encloses it. Each
of the children may be recursively subdivided.
The bounding volumes associated with nodes are
usually referred to as voxels, which is the three-
dimensional analog of a pixel. Sometimes an object
belongs in more than one voxel. In this case, either
the object is split into new objects that do not
belong in more than one node's voxel, or the object
(more often a pointer to the object) is stored in
both nodes (Fujimoto et al. 1986; Glassner 1984;
Kaplan 1985). As with the hierarchical extent tree,
the resulting octree has all of its objects stored at
the leaves and none in the interior nodes. Unlike
the hierarchical extent tree, a single leaf may con-
tain more than one object.
If a ray intersects the root node of an octree, it
is recursively tested against the children of the in-
tersected node. When a leaf node is intersected,
all of the objects stored in it are tested for intersec-
tion and the nearest, if any, is recorded. The octree
allows testing nodes in the order that the ray passes
through them, because it subdivides space into dis-
joint regions. For this reason, the traversal algo-
rithm can halt as soon as it finds a leaf in which
an object is intersected.

The splitting plane for each axis of subdivision in
an octree may be any arbitrary plane within the
current volume. Often the plane that is halfway
between the limits of the volume, the spatial medi-
an, is chosen. We refer to this as uniform space
subdivision. Choosing the spatial median means
that the positions of the planes need not be stored
in each node because they can be generated from
knowledge of the limits of the node. Depending
on the traversal method, the storage saved may
be large enough to warrant the additional re-com-
putation of the spatial median during traversal.
The two-way analog of the eight-way octree is the
k-d tree or bintree (Samet 1984). The only difference
is that where the octree divides a node into eight
subnodes using three splitting planes, a bintree di-
vides a node into only two subnodes using just
one splitting plane. Any octree can be represented
by a corresponding bintree. The subdivision of a
node in an octree is represented by three levels
of subdivision of a node in a bintree. Not all bintree
subdivisions can be represented exactly by an oc-
tree. It is often more convenient and more efficient
to use bintrees for space subdivision (Kaplan
1985).
There is an important clarification to be made con-
cerning the determination of whether a certain ob-
ject belongs in a given node of an octree (or a
bintree). An object belongs in a node only if the
surface of the object intersects the node's box. The
reason for this is that the point of intersection of
a ray with an object cannot occur within a box
that does not contain some part of the surface.
Octrees and bintrees share a problem peculiar to
space subdivision hierarchies. Depending on the
implementation, an object may be stored in more
than one node and may not be totally enclosed
by any particular node. Therefore, an intersection
test of a ray with an object may find an intersection
point outside the volume of the current node. This
is called fragmentation.
The algorithm as described so far assumes that the
computed intersection is the nearest point of inter-
section and halts. However, the intersection point
may be outside the volume of the current node,
so we have no guarantee that there is not a closer
intersection point with some other object in the
scene that is in some other node. Because of this,
only ray-object intersections that occur within the
volume corresponding to the current node are valid
and other intersections must be ignored until the
appropriate node is examined. To avoid testing a

154

r ~ ~ :~

. 3 1 s u a l ,
l omputcr

ray with the same object more than one time, a
ray-object cache can be used. This technique was
suggested by Amanatides and Woo (1987) and in-
dependently by Arnaldi et al. (1987), who used the
term "mailbox" to describe the cache. Caching has
been incorporated into some ray tracing algo-
rithms that use space subdivision (Cleary and Wy-
viii 1988).
To implement the ray-object intersection cache, it
is sufficient to maintain for each object the identity
of the most recent ray that has been found to inter-
sect the object and the point at which the intersec-
tion occurs. Subsequent intersection tests simply
check to see if the object has been tested against
the current ray and reuse the intersection data if
it is available. For uniprocessors it might be rea-
sonable to cache the intersection information with
each object simply as an additional field stored
with the object description. For a multiprocessor
in which every ray is assigned to a different proces-
sor, however, it would be necessary to have a sepa-
rate cache for every ray or processor, because mul-
tiple rays might be tested in parallel against a single
object. A single cache keeping only the "most re-
cent" intersection for an object might throw away
information about an active ray if a second ray
hit the same object. Adding enough fields to each
object to cache intersections from every processor
could prove costly in storage, so a hashing scheme
or similar technique might be required to maintain
the cache. We assume that some type of cache is
used for all subdivision algorithms.
In the following sections we review three particular
space subdivision techniques in terms of their costs
for construction, traversal, and storage. We then in-
troduce two heuristics for constructing space sub-
divisions and a neighbor link strategy for improv-
ing traversal and storage costs. We report on simu-
lations that test these ideas using bintree imple-
mentations.

2 Previous space subdivision
algorithms

Glassner gives one of the earliest published appli-
cations of octrees to ray tracing using the spatial
median splitting planes (Glassner 1984), with later
papers elaborating on the technique (Glassner
1987b, 1988). Glassner's method of construction
is a simple breadth-first technique. Nodes which
have more than a certain number of objects are

subdivided until a predetermined size of tree is
reached. The tree building is governed by two pa-
rameters: the maximum number of nodes and the
threshold value used for determining whether to
split a node. In some cases, Glassner's algorithm
will subdivide a smaller volume and leave a larger
volume unsubdivided. It is likely that only a few
rays go through the small volume, while many in-
tersect the large volume. Therefore, subdividing the
smaller gives very little performance gain. It is
probably better to subdivide the larger.
The crux of the problem is that Glassner's algo-
rithm does not take into account any measure of
the chance of a ray intersecting a node. Glassner
presents an improved algorithm (Glassner 1987b)
in which a node is subdivided if it contains more
than a threshold number of objects, or if it is larger
than a given volume. It seems that the choice of
threshold is very critical to the performance of this
algorithm.
During ray tracing, the ray progresses through the
volumes defined by the leaves of the octree, enu-
merating the leaf nodes intersected by the ray in
order of nearness to the ray origin. The objects
within the enumerated leaves are tested for inter-
section and the ray tracing algorithm halts at the
first intersected object. Each time the ray searches
for a new leaf of the octree, the traversal procedure
starts at the root node and works down the tree
node by node until a leaf is found. But two consecu-
tive leaves along the path of a ray generally share
several ancestor nodes. Glassner's approach ig-
nores this. A simple optimization of Glassner's tra-
versal algorithm would be to perform a binary
search among the ancestors for the lowest common
ancestor. Even with this optimization, we suspect
that for really large octrees the double-logarithmic
search time would still be a significant overhead.
Perhaps the worst drawback to Glassner's traversal
algorithm is the problem of ensuring that a "good"
hash function exists, since this is the mechanism
used for rapid accessing of nodes in the octree.
This is not adequately described by Glassner for
large octrees. A basic problem seems to be that
Glassner's approach is geometric in nature and ig-
nores the connectivity (or topology) implicit in the
octree.
Kaplan (1985) describes an implementation of a
bintree very similar to Glassner's octree approach.
A node is subdivided at the spatial median in each
of the three coordinates and three levels of sub-
nodes are created to represent the subdivision. The

155

,omputcr
traversal algorithm for a bintree is simpler because
only a two-way decision is required at each node,
instead of an eight-way decision required for each
octree node. The bintree representation typically
results in fewer leaves than the corresponding oc-
tree, because each leaf in a bintree corresponds to
at least one and possibly as many as four leaves
in the corresponding octree. The construction of
the tree is governed by the same criteria as
Glassner's second method (Glassner 1987b). A
node is subdivided if it contains more than a
threshold number of objects, or if it is larger than
a threshold size. Kaplan suggests using one as the
threshold number of objects. The problems with
this approach are the same as for Glassner's meth-
od.
Fujimoto et al. (1986) described what they consider
to be a significant speed breakthrough with regard
to space subdivision structures for ray tracing.
Their ARTS (accelerated ray tracing system) imple-
mentation is distinguished from Glassner's method
by the speed of its traversal algorithm, as opposed
to the uniqueness of its octree. The traversal algo-
rithm uses incremental integer arithmetic similar
to Bresenham's algorithm to enumerate the space
through which a ray travels. This is a three-dimen-
sional adaptation of the standard two-dimensional
DDA (digital differential analyzer) used to draw
lines. ARTS uses a uniform space subdivision with
explicit storage of the octree as a tree. This method
is superior to Glassner's hash table strategy in
terms of storage, requiring about 16% less space
according to the published storage requirements
for both algorithms (MacDonald 1988).
In addition to being more compact, the ARTS
method has faster traversal times because of the
explicit links to the children and because space is
partitioned into small voxels of a fixed size. The
smallest leaf in the octree is a power of two times
the size of the underlying voxels. The splitting
planes of the octree coincide with faces of the un-
derlying voxels, allowing a straightforward map-
ping from an underlying voxel to a leaf node. The
ARTS system traverses upwards in the octree from
the previous leaf only as far as required and then
down to the adjacent leaf. It is claimed that this
can be done quite efficiently using byproducts of
the incremental integer arithmetic algorithm.
We see three basic bottlenecks in the published
descriptions of these space subdivision algorithms:
the construction of optimal hierarchies given a
fixed number of nodes, the traversal time as rays

are traced through volumes, and the storage costs
associated with individual nodes. These issues a r e

addressed in turn in the following sections.

3 The surface area heuristic

The construction of the bintree or octree is typi-
cally insignificant compared to the computation
spent in actually traversing the tree to determine
ray-object intersections. Therefore it would be ad-
vantageous to devote a greater effort to creating
a more efficient tree, under the assumption that
the extra time would then be recovered during tree
traversal.
A heuristic approach for bintree construction can
be derived from the observation that the number
of rays likely to intersect a convex object is roughly
proportional to its surface area, assuming that the
ray origins and directions are uniformly distributed
throughout object space and that all origins are
sufficiently far from the object (Stone 1975). This
heuristic has been used to provide a measure of
the likelihood that a ray will intersect a bounding
volume in a hierarchical extent tree (Goldsmith
and Salmon 1987) and in octrees (Cleary and Wy-
viii 1988). We derive similar predictions for the
number of objects, interior nodes, and leaves inter-
sected in a space subdivision hierarchy and use
these to govern the construction of the tree.
We assume that all rays intersect the bounding vol-
ume for the entire scene. Thus, every ray intersects
the root voxel. We further assume that the proba-
bility of a ray intersecting any interior or exterior
node is equal to the surface area of the node di-
vided by the surface area of the root. This results
in the following intersection estimates.
no. of interior nodes hit per ray

Ni

= ~ SA (i)/SA (root)
i = 1

no. of leaves hit per ray

N~

= ~ SA(1)/SA(root)
/ = 1

no. of objects tested for intersection per ray

Nz

= ~ SA (1). N (l)/SA (root)

156

i31sual , ,omputcr
where the various quantities are

N~ = no. of interior nodes

Nl = no. of leaves

N (1)= no. of objects stored in leaf/

SA (i) = surface area of interior node i

SA (1) = surface area of leaf node l

Given these measures of the node, leaf, and object
visists performed during traversal of the tree, an
estimate of the cost of the tree can be obtained.
The costs associated with these three components
depend on the particular implementation of the
traversal algorithm and may be determined theo-
retically or experimentally. The total cost of a par-
ticular tree is determined from the three sums
above and the three related costs, which are as-
sumed to be constants for a given implementation.

This is expressed as cost of tree

Ni Nz Nz

Ci" ~ SA (i) + C,. ~ SA (l) + Co" ~ SA (1). N (1)
i = 1 / = 1 l = l

i

SA(root)

where the new quantities introduced in the equa-
tion are

Ci = cost of traversing an interior node

Ct = cost of traversing a leaf

Co = cost of testing an object for intersection

This cost function assumes that rays do not inter-
sect any objects, but also represents an upper
bound for rays that do intersect objects. The cost
function implies that if an object occurs in two
or more leaves, it is tested for intersection each
time a ray intersects one of these leaves. Therefore
a given object may be tested against the same ray
several times. As observed before, this is usually
unacceptable, and is avoided by caching objects
intersected against a ray so that each object is
tested at most once per ray. The cost function given
above must be modified to account for this caching
based on assumptions about the scene.
To derive the correct cost function, we require a
measure of the probability that a ray intersects at
least one leaf from the set of leaves within which
a particular object resides. This is equivalent to
determining the probability that a ray intersects
the volume defined by the union of the set of leaves.
Because this union may be nonconvex, the proba-
bility of ray intersection must be estimated by find-

ing a convex region to approximate the nonconvex
region. A simple approximation is the sum of the
areas of the projection of the set onto the six faces
of the root bounding volume divided by the root
bounding volume's surface area. For a convex ob-
ject, this measure is exactly equal to its surface
area divided by the root bounding volume's surface
area. We can us this approximation for the set of
leaves for all objects, whether the set of leaves for
each object is convex or not. This makes the object
portion of the cost of a tree object cost per ray

No

Co. Z SAset(S,(o))
o = 1

SA(root)

where the new quantities are

No = no. of objects

Sz (o)= leaves in which object o resides

SA set (s)= approximate surface area of set s

If we assume that the above costs are accurate,
we can use these equations to govern the construc-
tion of the tree, choosing nodes to subdivide so
as to minimize the total cost of the tree for a given
number of nodes in the tree. We call this rule the
surface area heuristic. It generalizes Glassner's use
of a minimum size below which nodes are not sub-
divided.
The validity of the surface area heuristic was tested
using a simulation. A set of 100 boxes with random
sizes and positions was created, where each box
was a standard rectangular parallelepiped and
100000 random rays were traced through the
bounding volume enclosing the boxes. These rays
had origins outside the bounding volume and were
directed at the bounding volume. The statistics re-
corded are presented in graphical form in Fig. 1,
where each point represents the surface area of a
box and the number of rays which intersected the
box. The number of rays intersecting a box is thus
shown to be directly proportional to its surface
area to within statistical variation.
The graph in Fig. 1 illustrates that the number of
rays intersecting a box is proportional to its surface
area, assuming random rays. However, this does
not prove that the estimates of interior and leaf
nodes intersected are correct, because the search
is truncated as soon as an intersection is found.
The estimate of the number of object tests also
cannot be assumed to be proven because that esti-

157

3]mal ,

 omputcr

5000

4500

4000

. ~ 3500
15

3000

E 2500
~6 2000

15oo

E Iooo

: ~ 5 0 0

Experimental verification of surface area metric

t~~ o

j o#OO

i i f i i t i

20 40 60 S0 100 120 140

Surface area

Fig. 1. Surface area heuristic data

160 180 200

mate is derived from an approximation of a possi-
bly concave set of leaves by a convex volume. To
test the validity of these estimates, a further simula-
tion was performed.
Random scenes of objects and random bintrees
were created. These were used to trace random rays
as in the previous simulation. The estimated
numbers of interior nodes, leaves, and objects
visisted were compared with the actual numbers
from the ray tracing. Each scene contained a ran-
dom number of objects between 10 and 500, with
random distribution in size from 0.01 to 1. The
bintree created for the scene contained a random
number of nodes between 10 and 1000, in which
nodes were subdivided in random order along a
random axis at a random position within the corre-
sponding voxels. In all 529 random scenes were
created and 10000 rays were traced for each scene.
Table 1 summarizes the results of the simulation.
In all cases the actual number is proportional to
the estimated number. In the case of the number
of interior nodes and leaves intersected, the esti-
mates actually provide upper bounds rather than
an average case estimate. This is understandable,

as the derivation of the estimates assumes that the
rays hit no objects. The constants of proportionali-
ty may therefore be used in conjunction with the
surface area heuristic to give a more accurate esti-
mate of the average number of interior nodes and
leaves intersected. The estimate of the number of
objects intersected was shown to be quite accurate,
with a constant of proportionality close to one.
One reason that this provided an average case esti-
mate, rather than an upper bound, is that there
are too few objects in the scene. Truncating the
search as soon as an intersection was found prob-
ably did not save many intersection tests, because
each ray may have intersected zero or one objects.
Therefore the estimate provided an average case
estimate. With denser scenes, the object intersec-
tion estimate should probably be scaled down in
the same way as the interior and leaf node esti-
mates.

4 Spatial median versus object
median

In all of the octree and bintree constructions the
position of the splitting planes is arbitrary, even
if the surface area heuristic is employed. Tradition-
ally, the splitting plane is chosen as the spatial me-
dian, resulting in a uniform space subdivision.
Heckbert (1982) employed a median split algorithm
that chooses a splitting plane based on the object
median in a k-d tree, where the objects are color
triplets (single points). The object median is the
splitting plane that places one half of the objects
on each side of the plane. The cost estimate devel-
oped using the surface area heuristic can also be
applied to selecting "good" splitting planes in this
extended model.
In the following discussions of splitting planes, we
will only consider the bintree. We assume that only
major planes are used as splitting planes and we
ignore the possibility of an object straddling a split-

Table 1. Results of simulation

Quantity Actual SD Correlation coefficient

No. of rays intersecting box 27.5 x surface area 5.2% 0.995
No. of interior nodes intersected 0.752 x estimate 12.7% 0.945
No. of leaves intersected 0.831 x estimate 14.1% 0.900
No. of object tests 1.03 x estimate 9.5% 0.985

158

J~,,.ll ,,~ 11
. . ,~ IS I I l t l l
,omputcr

ting plane (a case of practical importance, but one
we ignore nevertheless). We have to choose a pa-
rameter b to position the splitting plane, where
b = 0 corresponds to the lower limit of the splitting
plane and b = 1 is the upper limit. Choosing b = 0.5
is equivalent to selecting the spatial median.
Let us look at the cost as a function of this parame-
ter b. We observe that the internal node and leaf
node components of this cost savings function are
constant with respect to b. For the purposes of
minimizing cost, we can minimize the function

f (b) = LSA (b). L(b) + RSA (b). (n - L(b))- SA . n

where n is the number of objects in the node, L(b)
is the number of objects to the left of the plane
at b, and n-L(b) is the number to the right of
the plane because of our assumption that no ob-
jects straddle the plane. The surface area of the
left and right subnodes are LSA(b) and RSA(b),
respectively, and the surface area of the node itself
is SA. The first term represents the probability that
a ray intersects the left subnode multiplied by the
number of intersection tests performed in the left
subnode. The second term is a similar quantity for
the right subnode. The SA.n term is the amount
of work required if the node were not subdivided
and thus is an amount of work saved by changing
the original node from a leaf to an internal node,
hence the minus sign. This last quantity is a con-
stant with respect to b, so it may be removed from
the function, resulting in the following function to
be minimized:

f (b) = LSA (b). L(b) + RSA (b). (n - L(b))

To find a "good" splitting plane, one might evalu-
ate this function at several different positions and
choose the position with the minimum value. How-
ever, let us examine the behavior of this function.
The value of this function at the spatial median
is

f(O.5)=n.LSA(0.5)

because LSA (0.5) = RSA (0.5). Curiously enough,
the value of this function at the object median,
where half of the objects are on each side of the

splitting plane and L(b)= n, is exactly the same
z

(LSA (b) + RSA (b)). n ~=n.LSA(0.5)

because LSA(b)+RSA(b) is a constant indepen-
dent of b, which means that we can substitute
LSA(O.5)+RSA(0.5), which is 2.LSA(0.5). This
shows that picking the object median results in
the same gain as picking the spatial median. Intui-
tively, one might assume that picking the object
median would be a reasonable heuristic for choos-
ing an arbitrary splitting plane, but the above ob-
servation indicates that it is equivalent to the stan-
dard spatial median subdivision.
The optimum heuristic is to pick the splitting plane
which minimizes f(b). Differentiating with respect
to b gives

f ' (b) = LSA' (b). L(b) + LSA (b). E (b) + n. RSA' (b)
- RSA'(b). L(b) - RSA(b). E(b)

which can be simplified by substituting -LSA'(b)
for RSA' (b) because LSA (b) + RSA (b) is a constant,
giving

f ' (b) = (2. L(b) - n). LSA' (b) + (LSA (b)
-RSA(b)).E(b).

Since L(b) is a discontinuous function, E(b) is not
defined. However, for the purposes of minimization
off(b), we can assume that E (b) is always nonnega-
tive (the number of objects stored in the left sub-
node cannot decrease as b increases).
Let us investigate the case where the object median
lies at some point b<0.5. To the left of the object

median, f '(b) is negative, because L(b)<~- and

LSA (b)< RSA (b). To the right of the spatial medi-

an, f '(b) is positive, because L(b)<~ and LSA(b)

> RSA (b). Therefore the minimum must occur be-
tween the object median and the spatial median
in the case where the object median is to the left
of the spatial median. A similar argument can be
used for the other case where the object median
is to the right of the spatial median, thereby prov-
ing that for any node and set of objects within
it, the optimum splitting plane occurs between the
object median and the spatial median, reducing the
required search range.
The optimum splitting plane actually occurs within
this reduced range and at the upper or lower edge
of one of the objects within the range, rather than
in the middle of "white space." To take advantage
of this reduced range, one must first find the object
median, which is easy if the objects are sorted, but
otherwise requires a search of the space. If one

159

31sual
 ompur

does not want to perform this search, one can de-
termine how many objects are on each side of the
spatial median, thereby determining on which side
of the spatial median the object median occurs.
This allows one to cut the search space in half.
In the cases of small numbers of objects, one can
try splitting planes at the limits of each object with-
in the appropriate half and record the maximum.
For large numbers of objects, one might try a small
set of splitting planes at equally spaced intervals,
or even randomly selected intervals, within the ap-
propriate half. Alternatively, a cheap heuristic is
to select the splitting plane midway between the
object median and the spatial median.
Because of space limitations, we have not dealt
with objects spanning the splitting plane. Our re-
suits can be extended to handle this case as well,
although the analysis is more complicated (Mac-
Donald 1988).

5 Comparisons

Having verified the surface area metric as reasona-
bly accurate, different construction techniques for
space subdivision were investigated. Four new con-
struction algorithms, as well as Kaplan's algorithm,
were implemented for purposes of comparison and
evaluation. All algorithms were implemented on
bintrees. The construction algorithms consist of
two algorithms in which the spatial median is cho-
sen as the splitting plane, two algorithms in which
the splitting plane can be in an arbitrary position,
and Kaplan's algorithm as a standard of compari-
son. These algorithms are the following.

Kaplan's algorithm (zero degrees of freedom in the
splitting plane selection). This is simply Kaplan's
algorithm with a threshold value of one. Nodes
are subdivided until they contain zero or one ob-
jects, in a breadth-first order. The maximum height
of the tree was set to 30, which was felt to be large
enough not to restrict the growth, yet provide a
practical bound.

Arbitrary acyclic (two degrees of freedom). Splitting
planes can be anywhere within the node, and a
node may be divided along any of the three axes.
The optimal splitting plane is determined by sam-
pling at nine equally spaced intervals within the
node, recording the maximum value of the function

160

given previously. A node is subdivided along
whichever axis provides the greatest gain and
nodes are subdivided according to highest gain.
(Nine is an arbitrary number chosen to approxi-
mate the optimal splitting plane, yet not incur un-
reasonable amounts of computation by finding it
exactly during the simulation. We believe that the
10% accuracy achieved by this is sufficient for pur-
poses of this study.)

Arbitrary cyclic (one degree of freedom). Same as
arbitrary acyclic, except that the first level of subdi-
vision always occurs along the x axis, the second
along the y axis, the third along the z axis, cycling
through the three axes.

Spatial median acyclic (one degree of freedom).
Same as arbitrary acyclic, except that the spatial
median is always chosen as the splitting plane.

Spatial median cyclic (zero degrees of freedom).
Same as arbitrary cyclic, except that the spatial
median is always chosen as the splitting plane.

These algorithms were encoded as simply as possi-
ble without any attempt to optimize the code. It
was felt that it was more important that the code
be correct, and our emphasis was verification, rath-
er than efficiency. Statistics on the trees were re-
corded during the construction of the tree. The sta-
tistics include the number of interior nodes, the
number of empty leaves, the number of nonempty
leaves (containing one or more objects), the esti-
mated number of leaves visited, estimated number
of interior nodes visited, and the estimated number
of objects tested for intersection.
The ultimate goal of the strategies for building the
space subdivision structures is to improve perfor-
mance in actual ray-tracing systems. The perfor-
mance should therefore be evaluated with scenes
that represent a reasonable sample of all scenes
subjected to ray tracing. Five scene types proposed
by Kingdon (1986) were used. The object distribu-
tions are based on three simple random number
generators: U 3, which selects a random point with-
in a unit sphere; U ~ which selects a random point
on the unit sphere; and U e, which returns the out-
put of U ~ scaled by a gaussian distributed random
number with a mean of 0 and variance of 1. The
five scene types used in the simulations were the
following.

(3 su d A~lilplllCr
Small spherical. A set of triangles whose first ver-
tices are U 3 distributed in space and whose other
two vertices are 0.010. U ~ distributed offsets from
the first point.

Large spherical. A set of triangles whose first ver-
tices are U 3 distributed in space and whose other
two vertices are 0.333. U ~ distributed offsets from
the first point.

Small gaussian. A set of triangles whose first ver-
tices are 0.333. U e distributed in space and whose
other two vertices are 0.010. U ~ distributed offsets
from the first point.

Large gaussian. A set of triangles whose first ver-
tices are 0.333-U e distributed in space and whose
other two vertices are 0.333. U ~ distributed offsets
from the first point.

Three random vertices. A set of triangles whose ver-
tices are U 3 distributed in space, creating a set of
dense, interpenetrating triangles.

The small spherical and small gaussian scenes con-
tain triangles that are roughly ~ times the width
of the scene, while the large spherical and large
gaussian scenes contain triangles approximately
one-sixth the width of the scene, attempting to sim-
ulate the limits of object sizes in typical scenes.
The gaussian distributions provide a cluster of ob-
jects, while the spherical distributions provide
more spread out objects. Six instances of each scene
were used, varying only in the number of objects
comprising the scene. The numbers used were 256,
512, 1024, 2048, 4096, and 8192. The maximum
number of nodes was set according to the amount
of time and memory required and ranged from
2000 to 8000 nodes, depending on the scene type.
Also, for some scene types, only the first five scene
sizes were used, to limit computer usage.
Data from the simulations were analyzed to com-
pare the various algorithms. Figure 2 shows a
graph of the results for 1024 small spherical objects.
The other cases were similar, but are omitted from
this paper due to space limitations
In summary, the estimated number of nodes and
leaves visited for a given scene were very similar
over all five algorithms, as is evident from examin-
ing their graphs. Overall, the arbitrary acyclic algo-
rithm performed slightly better than the rest in
terms of number of nodes and leaves visited. How-

1024 Small spherical objects

9_b~ v

~7

8 - V

V
7d , o ~ v

�9 tm
6 *0 c~ I I v

$0 ~ V
.O ~v

.o o %
I 0 ~ i ,

2 - �9

1-

o ;"~-),.......-,, ,

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8009

Number of leaves (size of tree)

Fig. 2. Summary of simulations. $, Arbitrary acyclic;
o, arbitrary cyclic; E3, spatial median acyclic; I , spatial
median cyclic; v, Kaplan (spatial median)

ever, the number of objects intersected varied wide-
ly over the different construction algorithms. For
this reason and because the object cost is typically
higher than the other two costs, let us concentrate
on the number of objects intersected in order to
evaluate the algorithms' performance.
For the small spherical and small gaussian scene
types, the arbitrary acyclic algorithm performed
the best, providing up to three orders of magnitude
reduction in the number of objects tested for inter-
section. For the large spherical and large gaussian
scene types, the arbitrary acyclic algorithm was
also the best, but only up to one order of magni-
tude better. However, for the scenes consisting of
three random vertices, the Kaplan method per-
formed best. The general rule seems to be that the
arbitrary acyclic algorithm performs best for scenes
with nonoverlapping small objects, while Kaplan's
performs best for denser scenes with interconnected
objects.
The explanation for this behavior is that the arbi-
trary acyclic algorithm is a greedy algorithm, gov-
erning the subdivision by only looking one step

161

('3"isual
~ O l l i p l l l e l ~

in advance. If subdividing a node is not immediate-
ly advantageous, then it is not subdivided, even
if subjecting the node to two levels of subdivision
would be advantageous. Kaplan's algorithm, by
virtue of its breadth-first nature and an inability
to evaluate the benefit of subdividing a node, may
subdivide a node many times, resulting in a gain
where the arbitrary acyclic algorithm would not.
These observations indicate that a hybrid of the
arbitrary acyclic and Kaplan's algorithms might
provide optimum performance in all scene types.
A hybrid implementation was performed in which
the arbitrary acyclic algorithm was applied to a
node first to determine an optimum splitting plane.
If it does not find a speed gain above a certain
threshold dependent upon the surface area of the
node, then the spatial median is chosen. The coor-
dinate is dependent on the level of the node, similar
to Kaplan's method except that nodes are only
subdivided with one level of subdivision at a time
(rather than three levels). This forces the algorithm
to assume that subdividing a node results in a de-
crease in cost, even if the one-step look ahead indi-
cates an increase. Thus, a node that the original
algorithm does not find advantageous to subdivide
may be subdivided by the hybrid algorithm, result-
ing in a tree with a higher cost than if the node
remained a leaf. The children of this node may
then be subdivided, possibly resulting in an overall
decrease in the cost of the tree.
This process is used, as in the other algorithms,
only to determine the splitting plane, splitting coor-
dinate, and estimated gain if the node were to be
subdivided. The selection of the next node to subdi-
vide is, as in the arbitrary acyclic algorithm, the
node that has the highest estimated gain. When
the hybrid algorithm resorts to selecting the spatial
median, the gain associated with this split is set
at the threshold, rather than the actual value,
which would be lower. This hybrid algorithm was
run on each of the five scene types containing 1024
objects, except for the scene type containing three
random vertices, which had only 64 objects for effi-
ciency. It performs better overall than any of the
other algorithms (it was outperformed slightly by
the arbitrary acyclic algorithm in the case of a large
gaussian scene).
It is interesting to note that the portions of the
graphs pertaining to Kaplan's algorithms often
contain line segments and abrupt changes of slope.
These are due to the fact that after some point
in the construction of the tree, Kaplan's algorithm

essentially builds the tree level by level. The line
segment portions correspond to individual levels,
and the abrupt changes in slope correspond to the
filling of a level.
At the end of each simulation, the total number
of object instances (number of objects stored at
the leaves) was recorded. The arbitrary algorithms
produced near optimum numbers, that is, only
10% or 20% more object instances than objects,
while Kaplan's and the other two spatial median
algorithms produced trees with up to ten times as
many object instances as objects. The reason for
this is the implicit motivation to keep objects in
as few leaves as possible, provided by the cost func-
tion used in selecting the splitting plane for arbi-
trary subdivision.

6 Storage

The simplest and most obvious method of storing
the bintree (octree) is as an explicit tree with two
(eight) pointers per node. This has a large space
requirement, motivating the more compact octree
schemes of Glassner and ARTS.
The storage method has a marked effect on the
speed of traversing a tree. In ray tracing the inter-
nal nodes of a space subdivision are not interesting.
All useful information is in the leaves. The traversal
cost can be decreased by storing links to neighbors
on each of the six faces of each leaf. Samet (1984)
describes such links in quadtrees, called ropes, and
credits Hunter and Steglitz for their invention. A
more recent paper also discusses neighbor-finding
(Samet and Webber 1988). For the purposes of the
following discussion, let each face of each leaf have
exactly one neighbor, defined as the smallest node
(interior or leaf) whose voxel's surface totally en-
closes the face of the leaf in question. By this defini-
tion, the neighbors of a leaf are not necessarily
leaves. However, this definition guarantees that
each leaf has exactly one neighbor per face (except
leaves on the boundary of the scene, which have
none for outer faces).
During traversal of the structure it is necessary to
determine the face exited. The neighbor link of a
face is followed and if the neighbor is a leaf, pro-
cessing of the objects within the leaf is performed.
If the neighbor is an interior node, then the exit
point of the current leaf must be computed and
used to descend the neighbor's subtree to find the
appropriate leaf. This strategy eliminates all up-

162

('31sual ,

.a mputcr
ward traversal of the tree and some downward tra-
versal. In general, when a ray travels from one area
to an area of equal or lower subdivision, the neigh-
bor is a leaf and the hierarchy traversal cost is
zero. It is only when traveling to an area of higher
subdivision that there is any hierarchy cost. In this
case the cost is less than the corresponding cost
of the methods described earlier because the up-
ward traversal to the common ancestor is elimi-
nated and some of the downward traversal may
also be avoided (about equal to the upward traver-
sal eliminated). Therefore, the neighbor links re-
duce the hierarchy cost significantly, at the added
expense of six pointers per leaf.
A further modification of the neighbor links is to
redefine the neighbors of a face as all leaves adja-
cent to that face. Now, all neighbors are leaves,
but any given face may have more than one neigh-
bor, which requires more memory per leaf than
the previous link strategy. However, in the case
of spatial median subdivision, the amount of mem-
ory required is now less than 12 pointers per leaf
on average, only twice that of the former method.
The average of 12 pointers per leaf stems from the
observation that, although some faces have a large
number of neighbors, others have only one neigh-
bor, with the average being two pointers per face.
This is illustrated in Fig. 3, which shows n + 1 faces,

2.n
and 2- n links, and hence n +I- links per leaf, which

means fewer than two pointers per face. With arbi-
trary subdivision, the number of pointers per face
may be higher, because Fig. 3 no longer covers all
possible subdivision cases.
The storage of the neighbors for a leaf consists
of six integers representing the number of neigh-

bors of each face, plus a list of pointers to the
neighbors of each face. Alternatively, the neighbors
could be stored in a two-dimensional bintree (or
quadtree) to quickly determine the appropriate
neighbor for a given exit point. In fact, such a quad-
tree is implicit in an octree already. A single neigh-
bor link to a node that has further subdivision
is sufficient to find all adjacent neighbors because
the standard quadtree search can be performed on
the octree structure simply by ignoring the coordi-
nate whose value is known (i.e., if the neighbor
is being sought across a "positive" x face, then
only the "negative" x nodes in the octree are rele-
vant).
The complete neighbor links scheme eliminates the
hierarchical traversal altogether, because finding
the next node only requires following the links,
but it introduces the additional cost of determining
which link to follow if a leaf has more than one
neighbor on a given face. We assume that the
number of neighbors of a leaf is proportional to
its surface area.
Better search performance may result from the use
of a two-dimensional bintree to search for the
neighbors or by performing a binary search on the
sorted neighbor lists. Either of these two methods
reduces the expected number of tests per face to
log n complexity. The form of the tests is single
comparisons in the case of the two dimensional
bintree, rather than four comparisons. The ex-
pected number of comparisons is therefore propor-
tional to

Nz

SA (/) log SA (1)
/ = 1

N, 1 - 2 3
~' N~/3 3 .logN/--~ ~/~z'logNt

/ = 1

1 leaf

Fig. 3. Neighbor links in octree

I I I
2n links

n leaves

Although it appears that the neighbor links ap-
proach may have large space requirements, there
is a memory-speed tradeoff that can be invoked.
Instead of defining links to occur at all leaves in
the tree, one can define the links to occur at all
interior nodes that only have leaves for children.
This decreases the extra space to approximately
one-eighth of the original space requirements in
the octree case, or one half in the case of a bintree.
This method incurs the same traversal cost as the
original neighbor links plus one additional upward
traversal per leaf and possibly one downward tra-
versal.

163

31sual
 ompu{cr

Table 2. Number of parent-to-child and child-to-parent traversals recorded from the simulation

Scene type Up/down traversals, i000 nodes

Up Down Neighbors down

1000 Small spherical 36.35589981 36.38169861 9.951199532
1000 Large spherical 15.85369968 20.09070015 8.987500191
1000 Small gaussian 33.94269943 33.94810104 10.09840012
1000 Large gaussian 24.50469971 25.91119957 8.954000473
64 3-Random verts 15.17660046 19.25169945 9.043399811

More generally, the linking can be defined only
for the set of nodes at a particular height above
the leaves. For example, links may be stored in
all nodes that are a fixed distance n above the dee-
pest leaf in their subtree. The case n= 1 corre-
sponds to the above method of storing at all nodes
that only have leaves for children. The amount of
memory required is proportional to (~)" in the case
of an octree, yet the extra traversal cost is only
proportional to n. A suitable value of n results in
an appropriate tradeoff between space and the ad-
ditional up and down traversals. For practical
cases n can be chosen so that the extra indirection
to follow links is modest and the additional storage
for links is vanishingly small.
A neighbor links strategy was implemented, using
the simple definition of neighbors which gives ex-
actly one neighbor per face, as opposed to the com-
plete neighbor links strategy. One instance of each
of the five scene types was used to build an arbi-
trary acyclic type bintree, with the neighbor links
for each leaf computed. All scenes had 1000 objects
and the bintrees constructed contained 1000 nodes.
After building the bintrees, 10000 random rays
were traced and the number of parent-to-child and
child-to-parent movements were recorded for each
of the conventional traversal algorithms and the
neighbor links method. These numbers indicate the
savings in traversal cost by using the neighbor links
strategy.
Table 2 summarizes the number of parent-to-child
and child-to-parent traversals recorded from the
simulation. The second and third columns give the
number of up and down links followed for the con-
ventional traversal algorithms. The fourth column
gives the number of down links followed for the
neighbor link algorithms (there are no up links fol-
lowed). If it is assumed that the cost of a single
upward traversal is equivalent to a single down-
ward traversal, then these numbers show that the
neighbor link scheme decreases the traversal cost

164

to between one-seventh and one-quarter of the cost
of an ARTS-type traversal method.
Storage of the lists of objects that belong in each
leaf have large space requirements. Glassner stores
all the object lists in a single array of object indices,
where each list ends with a "nil" index. Glassner's
scheme provides a separate object list for eachleaf.
A more compact scheme would allow more than
one leaf to point to the same object list. In cases
where there are many duplicate leaf lists, this
scheme would result in significant memory savings.
There would be an added cost during the traversal
phase in order to identify duplicate lists but only
one extra level of indirection. Even more savings
would result if lists that are subsets of other lists
are identified, and a pointer to the beginning of
a sublist within a larger list used to avoid explicit
storage of the sublist. The larger list would have
to be organized so that the sublist is at the end.
The most compact scheme is to partition the set
of objects into equivalence classes, where each
equivalence class is a set of objects that belong
in the same set of leaves. In the worst case, each
equivalence class consists of one object, in which
case this scheme is equivalent to the above many-
to-one linking with the overhead being a single
extra level of indirection. The object list for a leaf
is thus a list of equivalence classes, rather than
a list of object indices. Although the computation
of the equivalence classes might be quite expensive,
it is only computed once when the space subdivi-
sion is constructed. The savings in space might well
outweigh the extra computing time.

7 Discussion

The cost of ray tracing using space subdivision
trees can be estimated by the number of interior
nodes, leaves, and objects visited per ray, and the

I S U ~ | |
{amlpllter

respective costs of these visits. This paper reports
new construction algorithms which represent con-
siderable improvement over conventional methods
in terms of reducing the number of nodes, leaves,
and objects visited by a ray. The algorithms employ
the surface area heuristic and a heuristic for esti-
mating the optimal splitting plane located between
the spatial median and the object median.
The efficiency of traversal has been improved by
attacking its two main costs, the processing of inte-
rior nodes (a major improvement) and the compu-
tation of the ray exit point (a minor improvement).
The neighbor link strategy has been employed to
significantly reduce the number of interior nodes
visited compared to Glassner's algorithms.
Many of the ideas in this paper should carry over
to hierarchical extent trees. All of the ideas should
be examined with respect to higher-dimensional
data structures, dynamic data structures, and mul-
tiprocessor algorithms. We suggest a few areas for
future research in our closing remarks.
In computer animation, it is common for scenes
to change from frame to frame, as objects appear,
disappear, and change position, shape, color, and
other attributes. The data structures representing
the scene must be updated to reflect these changes.
An important issue when choosing a data structure
to represent scenes is whether the structure allows
dynamic modification as the scene changes, and
whether the dynamic modification is more efficient
than rebuilding a static structure each time the
scene changes. The restriction to static structures
is not unreasonable, as static structures are appro-
priate in cases where the viewpoint changes often
compared to the objects in the scene. But when
this is not the case, our algorihms must be extended
to accommodate dynamic changes. One specific
method of dealing with dynamic objects is to treat
time as simply another dimension, with the data
structure subdividing the objects in 4-space.
Glassner (1988) has reported on such an ap-
proach.
Our discussion has not addressed issues related to
multiprocessors. Other authors have suggested a
variety of techniques for utilizing multiprocessors
in ray tracing. We believe that many of our tech-
niques can be applied here as well.

Acknowledgements. This work was supported by an operating
grant and a postgraduate scholarship from the Natural Sciences
and Engineering Research Council of Canada and by equip-
ment and operating funds from Digital Equipment of Canada.

References

Amanatides J, Woo A (1987) A fast voxel traversal algorithm
for ray tracing. Proc Eurographics '87:1 10

Arnaldi B, Priol T, Bouatouch K (1987) A new space subdivi-
sion method for ray tracing CSG modeled scenes. Visual
Computer 3:98 108

Cleary JG, Wyvill G (1988) Analysis of an algorithm for fast
ray tracing using uniform space subdivision. Visual Comput
4:65-83

Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing.
Comput Graph 18:137 145

Fujimoto A, Tanaka T, Iwata K (1986) ARTS: accelerated ray-
tracing system. IEEE Comput Graph Appl 6:16-26

Glassner AS (1984) Space subdivision for fast ray tracing. IEEE
Comput Graph Appl 4:15-22

Glassner AS (1987a) An overview of ray tracing. SIGGRAPH
'87 Introduction to Ray Tracing Course Notes

Glassner AS (1987b) Spacetime ray tracing for animation. SIG-
GRAPH '87 Introduction to Ray Tracing Course Notes

Glassner AS (1988) Spacetime ray tracing for animation. IEEE
Comput Graph Appl 8:60-70

Goldsmith J, Salmon J (1987) Automatic creation of object hier-
archies for ray tracing. IEEE Comput Graph Appl 7:14-20

Heckbert PS (1982) Color image quantization for frame buffer
display. Comput Graph 16:297-307

Kaplan M R (1985) The uses of spatial coherence in ray tracing.
SIGGRAPH '85 Course Notes no 11

Kay TL, Kajiya JT (1986) Ray tracing complex scenes. Comput
Graph 20: 269-277

Kingdon SJ (1986) Speeding up ray-scene intersections. Thesis,
Univ Waterloo

MacDonald JD (1988) Space subdivision algorithms for ray
tracing. Thesis, Univ Waterloo

Rubin SM, Whitted T (1980) A three-dimensional representa-
tion for fast rendering of complex scenes. Comput Graph
14:110-116

Samet H (1984) The quadtree and related hierarchical data
structures. Comput Surv 16:187 260

Samet H, Webber RE (1988) Hierarchical data structures and
algorithms for computer graphics. IEEE Comput Graph
Appl 8:48-68; 8:59 75

Scherson ID, Caspary E (1987) Data structures and the time
complexity of ray tracing. Visual Comput 3:201-213

Stone L (1975) Theory of optimal search. Academic Press, New
York

Weghorst H, Hooper G, Greenberg DP (1984) Improved com-
putational methods for ray tracing. ACM Trans Graphics
3: 52-69

165

. ~ / S | I , I I
t, onlputcr

DAVID M A C D O N A L D re-
ceived his BSc degree in mathe-
matics and computing sciences
from St. Francis Xavier Univer-
sity in 1986 and his MMath de-
gree in computer science from
the University of Waterloo in
1988. He is currently a software
engineer at Visual Edge Soft-
ware Ltd., Montreal, Quebec.
His research interests include
data structures, ray tracing, and
interactive graphics for scientif-
ic visualization with an empha-
sis on the analysis of continuous
fields.

KELLOGG S. BOOTH is pro-
fessor of computer science and
director of the Institute for
Computer Research at the Uni-
versity of Waterloo, where he
has been on the faculty since
1977. Prior to that he was a
member of the research staff in
the Computation Department
of the Lawrence Livermore Na-
tional Laboratory in the com-
puter graphics group. His re-
search interests include high
performance graphics worksta-
tions, computer animation, user
interface design and analysis of

algorithms. He received his BS in mathematics from Caltech
in 1968 and his MA and PhD in computer science from UC
Berkeley in 1970 and 1975. He is a member of the Canadian
Man-Computer Communications Society, IEEE and ACM, and
is a past chairman of ACM SIGGRAPH. Dr. Booth is a consul-
tant to government and industry on computer graphics and
related areas of computer science.

166

