
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224299269

Collision detection: A survey

Conference Paper · November 2007

DOI: 10.1109/ICSMC.2007.4414258 · Source: IEEE Xplore

CITATIONS

74
READS

650

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Locomotion View project

Biomedical signal processing View project

Sinan Kockara

University of Central Arkansas

35 PUBLICATIONS 246 CITATIONS

SEE PROFILE

Tansel Halic

University of Central Arkansas

49 PUBLICATIONS 306 CITATIONS

SEE PROFILE

Kamran Iqbal

University of Arkansas at Little Rock

113 PUBLICATIONS 1,037 CITATIONS

SEE PROFILE

Coskun Bayrak

Youngstown State University

127 PUBLICATIONS 510 CITATIONS

SEE PROFILE

All content following this page was uploaded by Coskun Bayrak on 01 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/224299269_Collision_detection_A_survey?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224299269_Collision_detection_A_survey?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Locomotion-3?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Biomedical-signal-processing-7?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sinan_Kockara?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sinan_Kockara?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Central_Arkansas?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sinan_Kockara?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tansel_Halic?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tansel_Halic?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Central_Arkansas?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tansel_Halic?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamran_Iqbal?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamran_Iqbal?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Arkansas_at_Little_Rock?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamran_Iqbal?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Coskun_Bayrak?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Coskun_Bayrak?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Youngstown_State_University?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Coskun_Bayrak?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Coskun_Bayrak?enrichId=rgreq-4a13718907cb7b7f605817f162787864-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI5OTI2OTtBUzoxMDMwODI0MDI3NzkxNDJAMTQwMTU4ODE2ODg3NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

/

Abstract—A process of determining whether two or more
bodies are making contact at one or more points is called
collision detection or intersection detection. Collision detection is
inseparable part of the computer graphics, surgical simulations,
and robotics. There are varieties of methods for collision
detection. We will review some of the most common ones.
Algorithms for contact determination can be grouped into two
general parts: broad-phase and narrow-phase. This paper
provides a comprehensive classification of a collision detection
literature into the two phases. Moreover, we have attempted to
explain some of the existing algorithms which are not easy to
interpret. Also, we have tried to keep sections self-explanatory
without sacrificing depth of coverage.

I. INTRODUCTION

HEN given the two models and their placements in the
world space, the simplest brute force approach to
perform a collision query is to test each of the primitive

segments in object A against each of the primitive segments of
object B, requiring number of A’s primitive segments times
number of B’s primitive segments overlap tests. We cannot
perform exhaustive pair-wise testing on models which have
thousands of primitives since a collision query needs to be
performed in every simulation step in order to detect colliding
objects. Animations can have many objects, all of which may
have a complex geometry such as polygonal soups of several
thousands facets. It is therefore computationally heavy burden
to perform collision detection. Thus, to eliminate this
computationally costly pair-wise tests some different
algorithms proposed in the literature.

Hubbard [1] was the first who classified the collision
detection in terms of broad-phase and narrow-phase. Those
concepts of broad-phase and narrow phase collision detection
reduce the computational load by performing a coarse test in
order to prune an unnecessary pair test. Broad-phase collision
detection identifies disjoint groups of possibly intersecting

Manuscript received March 16, 2007. This work was supported in part by
the University of Arkansas Medical Sciences.

Sinan Kockara is with University of Arkansas at Little Rock, Applied
Science Dept., 2801 S. University Ave., Little Rock, Ar 72204 (phone:
501-6837154; e-mail: sxkockara@ualr.edu).

Tansel Halic is with University of Arkansas at Little Rock, Applied
Science Dept., 2801 S. University Ave., Little Rock, Ar 72204 (e-mail:
txhalic@ualr.edu).

Kamran Iqbal is with University of Arkansas at Little Rock, Systems
Engineering Dept., 2801 S. University Ave., Little Rock, Ar 72204 (email:
kxiqbal@ualr.edu).

Coskun Bayrak is with University of Arkansas at Little Rock, Computer
Science Dept., 2801 S. University Ave., Little Rock, Ar 72204 (e-mail:
cxbayrak@ualr.edu).

Richard Rowe is with University of Arkansas Medical Scieneces,
Neurosurgery,, 4301 W. Markham, Little Rock, AR 72205 (e-mail:
RoweRichard@uams.edu).

objects. On the contrary, pruning unnecessary primitive-pair
test is narrow-phase collision detection. Most of the literature
uses Hubbard’s broad and narrow phase collision detection
scheme to classify collision detection algorithms [2][3]. The
same classification technique will also be used throughout this
survey. Some of the methods such as bounding volumes are
included in both broad and narrow-phase collision detection.

II. BROAD-PHASE COLLISION DETECTION

Broad-phase collision detection determines objects which
should be tested with during the narrow-phase. Therefore,
approximating objects with boxes makes broad-phase
collision detection easier. To perform broad-phase collision
detection, there are mainly three different kinds of algorithms:
All-pair test (Exhaustive Search), sweep and prune
(Coordinate Sorting), and hierarchical hash tables (multi-level
grids).

An exhaustive search is a brute-force approach which
compares each object’s bounding volume with others’
bounding volumes. If algorithm finds colliding bounding
volumes then starts further investigation with narrow-phase
collision detection algorithms. Sweep and prune algorithm
[5][6] projects every object’s bounding volume’s starting and
ending points onto the coordinate axes. If there is intersection
among the entire principal coordinate axes, then there is
collision between the objects. Hierarchical hash tables are
another approach in broad-phase [7]. This approach divides
the entire scene into the same size grids along all the principal
axes. All points overlaps with the given grid cell is identified
by the algorithm. If there is more than one object sharing the
same cell, then those objects are possibly colliding objects.

III. NARROW-PHASE COLLISION DETECTION

Broad-phase lists pairs of possible colliding objects and
narrow-phase inspects further each of these pairs and finally
contact determination algorithms determine the exact
collisions. Narrow-phase algorithms usually return more
detailed information. That information can be later used for
the computation of time of impact, collision response and
forces, and contact determination. Algorithms in this category
can be categorized into the four groups: feature-based,
simplex-based, volume-based, and spatial data structures [8].

A. Feature-based Algorithms

This kind of algorithms directly works on the geometric
primitives of the objects. Well known examples are polygonal
intersection [8], Lin-Canny [9], V-Clip[10], SWIFT[11][12].
Lin-Canny algorithm is the first feature-based algorithm in the
literature. There are other feature tracking algorithms
proposed based on Lin-Canny such as Voronoi-Clip (V-Clip)

Collision Detection: A Survey

S. Kockara, T. Halic, K. Iqbal, Senior Member, IEEE, C. Bayrak, and Richard Rowe

W

40461-4244-0991-8/07/$25.00 ©2007 IEEE

and SWIFT. In real-time simulations, objects tend to change
their orientations or rotations by small amounts from one
frame to another (coherence). That coherence assumes that the
closest points between two non-intersecting objects are
located in the near vicinity of the closest points between the
same objects located at the previous frame. However, for a
polyhedron, even a minute change in orientation can cause a
big change on closest points’ locations between consecutive
frames. Therefore, for polyhedra, Lin et al. [9] proposed using
the closest features (vertices, edges, or faces) rather than
tracking closest points from one frame to another. A drawback
for Lin-Canny is that it does not terminate when presented
with penetrating polyhedra.

Another feature based algorithm is V-Clip. It is based on the
theorem which defines the closest points between two
polyhedra in terms of the closest features of the pair of
polyhedra. Figure 1. shows pair of 3D polyhedra satisfying the
theorem. F(X) and F(Y) are closest pair of features and P(X)
and P(Y) are closest pair of points (not necessarily unique
points) between two polyhedra X and Y. Red lines indicate
Voronoi region for object X and yellow lines indicate Voronoi
region of Y. The V-Clip starts with two features one from X
and another from Y. Feature F(X) is edge E and feature F(Y)
is vertex V. If P(X) is in Voronoi region of Y and P(Y) is in
the Voronoi region of X, the F(X) and F(Y) are closest pair of
features. In each iteration, the features are tested to see if they
are satisfying the conditions at the theorem. If they satisfy the
theorem, algorithm terminates and returns nonintersecting
between two polyhedra. If the theorem does not satisfy, one of
the features is updated with a neighboring feature. Neighbors
of a feature are defined as:

Definition: The neighbors of a vertex are the edges incident
to the vertex, the neighbors of a face are the edges bounding
the face, and the neighbors of an edge are the two vertices and
the two faces incident to the edge.

The V-Clip becomes trapped in a local minimum in the
vertex-face state where the vertex lies below the supporting
plane of the face and at the same time lies inside all of the
Voronoi planes of Voronoi region. That can cause objects
penetrations before collision detection.

Figure 1. Closest pair of features and closest pair of points (P(X), P(Y)) for
Vertex-Edge feature pair

B. Simplex Based Algorithms

The simplex is the convex hull of an affinely independent
set of points. The GJK (Gilbert-Johnson-Keerthi) [26] is the
well known ancestor of this group of algorithms [27]-[30].
GJK takes two sets of vertices as input and finds the Euclidean
distance and closest points between the convex hulls. Thanks

to Gilbert et al. [31], GJK was generalized to be applied to
arbitrary convex point sets, not just to polyhedra. An
important fact in GJK is that: it does not operate on the two
input objects; however, operates on the Minkowski difference
between the objects. Minkowski difference provides
transformation of the problem from finding the distance
between two convex sets to that of finding the distance
between the origin and a single convex set. The GJK searches
a sub-volume of the Minkowski difference object iteratively
(each sub-volume being a simplex). We take a cue from the
work of Ericson et al. [3] and clarify the GJK algorithm.

Let A and B two convex point sets and x and y two position
vectors corresponding to pairs of points in A and B
respectively. The Minkowski difference is defined as

{ : , }A B x y x A y BΘ = − ∈ ∈ . The GJK algorithm based

on the fact that separation distance between two convex
polyhedra A and B is equal to the distance between
Minkowski sum and the origin as shown in Fig. 2. [3] below.

Fig. 2. Minkowski Difference

Two convex objects collide if and only if their Minkowski
difference contains the origin. Fig. 3. [3] illustrates how GJK
algorithm finds a point closest to origin O. In this case, the
distance of closest point to the origin is equal to the minimum
distance between two convex polyhedra due to the Minkowski
difference.

Fig. 3. GJK Algorithm

The algorithm arbitrarily begins with vertex C as the initial
simplex set Q={C}. For a single-vertex simplex, vertex itself
is the closest point to the origin X. Searching in the direction
(from vertex C to the origin) results vertex D as a supporting
point or extreme point at this direction. So, D is added to the
simplex set Q={C,D}. The point in convex hull Q closest to
the origin is now E. Since both C and D are needed to express
point E we keep these vertices in the simplex Q={C,D}. Now
F is the extreme point in the direction from E to the origin.
That results new convex hull Q, Q= {C,D,F}. The closest
point to the origin from convex hull Q is now point G. Since
representing point G is possible with only D and F, C is
removed from the simplex, Q={D,F}. Now supporting vector
is from point G to the origin and new extreme point is H. H is
added to the simplex Q, Q={D,F,H}. The point on Q closest to
the origin is now J. Since F and H are smallest set of vertices to
represent J, D is removed from Q, Q={F,H}. After this point,

4047

there is no vertex closer to the origin in direction from J to the
origin. Therefore, J must be the closest point to the origin and
the algorithm terminates.

C. Image-Space Based Algorithms

Image space base (ISB) techniques are computed by
image-space occlusion queries which are convenient to
implement on the graphics hardware (GPU). Therefore, ISB
techniques are recently more preferred. Opposite to common
belief, they can also be employed on the CPU rather than GPU
such as [13]. Occlusion queries have lower bandwidth than
buffer read-backs and thus more convenient for GPU
implementations [14]. Frontiers of ISB methods include
[15]-[18] and [19]-[23]. All these methods have several
common drawbacks. They are much slower than hierarchical
approaches. They usually have O(n) complexity. During the
rendering, objects are discretized to the image space which
causes erroneous representations. These errors depend on the
size of the viewport, the internal representation of numbers,
and the number of bits per pixel in the z-buffer. Therefore, the
size of the viewport has significant impact on the
performance.

Cinder [21] is well known example of the ISB algorithms. It
is based on 3D version of Jordan Curve Theorem [4]. It is a
theorem in computational geometry that a semi infinite ray
originating within a solid will intersect the boundary of the
solid odd number of times as in Fig. 4. Cinder is handling both
convex and non-convex geometries. The tests for collisions
are performed in image space. The algorithm does not require
any pre-processing or special data structures. It uses frame
buffer operations to implement a virtual ray casting algorithm
for every pixels that detect interference between objects. The
edges of the objects are written to the depth buffer and the
objects they penetrated each other are detected by using a
virtual ray-casting algorithm. The number of polygons that the
ray passes through is counted in such a way that if summation
result for one ray is even, then the point is outside the object.
In contrast, if the summation results un-even, then the point is
inside the object and there is a collision. The algorithm uses a
stencil buffer for counting the number of front and back facing
polygons that the rays pass through. The values in the stencil
buffer are increased for front-facing polygons and decreased
for back-facing polygons. If at the end there is non-zero value
in the stencil buffer, then edge in the specific pixel is inside an
object. Colliding objects’ identifications’ numbers are kept in
color-buffer. The algorithm’s running time is linear in the
number of objects and the number of polygons existing in the
objects. With this algorithm, collisions that are about to
happen or have already occurred will not be detected. This
occurs when objects’ very thin parts pass through each other
in space of one frame. The object must be closed to get a
correct result. The Fig. 5. shows an example of CINDER.

CULLIDE [24] uses occlusion queries and one of the
prominent examples of ISB methods. The graphics hardware
is used only to detect potentially colliding objects, while
triangle-triangle intersections are performed in the CPU.
CULLIDE uses clever but simple lemma to prune the

non-colliding objects from possibly colliding objects’ set. The
lemma is: “An object A does not collide with a set of objects
S, when A is fully visible with respect to S.” CULLIDE keeps
potentially colliding objects in a set which initially includes
each and every object in the scene. Then it prunes the
primitives from a potentially colliding set by rendering in a
two-pass algorithm; first rendering front and then reverse
order. Throughout the rendering, visibility (occlusion) queries
remove objects from potentially colliding list if the object is
not visible. This strategy continues iteratively until no more
changes are made in potentially colliding set (PCS). The
primitives in the final PCS are then made for exact collision
detection. Boldt et al. [25] extended CULLIDE to handle self
collision tests. Even though this approach alleviates Cinder’s
restrictions on object topology; CULLIDE’s effectiveness
degrades dramatically when the density of the environment
increases.

Fig. 4. Jordan Curve Theorem

Fig. 5. Cinder with Virtual semi-infinite ray casting

D. Volume Based Algorithms

Most of the volume based algorithms conceptually based on
the same idea of the ISB techniques; however, they use
different methods to compute layered depth images [51] and
distance fields etc. These groups of algorithms are also
suitable for GPU implementations.
Gundelman et al. [32] is one of the volume based collision
detection algorithm which assumes that A and B are objects in
the scene and we are searching whether they are colliding or
not. This algorithm works by taking vertices of A and looks
them up in the signed distance function of B. After that, the
vertices of B are looked up in the signed distance function of
A. Each object is represented by a triangular mesh and the
signed distance map. Thus, both the triangular mesh and
signed distance grid are stored in object space. This means
that when vertices of A looked up in B, then they must be
transformed from object space A to objects space B. The
drawback of this algorithm is that it is not tailored for
detecting edge-edge intersections.

E. Bounding Volume Hierarchies

There are two types of spatial data structures for collision
detection: spatial division and bounding volume hierarchies
(BVH). Spatial partitioning recursively divides the space. On

4048

the other hand, BVH recursively or iteratively partitions the
object itself. With spatial partitioning, splitting of polygons is
unavoidable. This causes increase of depth of the tree and
performance lost. In addition, since cell size of the spatial
partitioning cannot cover objects’ primitives tightly, when
objects are close, determining contact status is difficult. On
the contrary, BVs provide smaller and tighter hierarchies than
spatial partitioning. In addition, BVHs are more applicable for
general shapes than simplex based and feature based
algorithms. BVH can be called as discrete representation of
level of details of objects. At the first level, hierarchy includes
one bounding volume which is very coarse representation of
an object. Further levels include more detail representation of
the object. The leaf level or finest level of the hierarchy
generally includes the object primitives (lines, triangles, or
tetrahedra). There is a parent-child relationship between
succeeding levels with the topology of the tree. Bounding
volume (BV) does not necessarily enclose its children’s
bounding volume; instead it must enclose the geometry of an
object included in the children BVs.

Even though objects are not colliding, their BVs can
collide. Therefore, we must look further down of the BVH to
answer the question of whether objects are colliding or not.
We do this by changing one of the root volumes by its
children. Determining which root volume to descend is called
traversal rule. Generally largest volume is chosen to descend
to lower the chance of finding overlapping. If two volumes are
equal then random choice is made. Non-overlapping BVs are
discarded from further consideration (pruning). At last in the
traversal, if we reach to two leaf nodes from two distinct
volumes, then we have two choices; whether testing two
primitives are colliding (pairwise test) or testing one primitive
with the other’s leaf bounding volume (primitive-volume
test). If objects’ primitives are colliding, we have to test two
primitives anyway. Thus, there is a tradeoff between the
number of iterations and the complexity in the overlap tests.

Gottschalk et al. [33] states that recursively traversing
BVHs is often a bad choice since the number of primitives and
the hierarchies can be quite large. Therefore, number of
recursive calls would be huge; that causes memory stack
overflows. This problem can be solved by using iterative
traversal technique with first-in-first-out queue. The idea of
using queue to escape from disadvantage of recursive nature
of the algorithm is taken one step further by [34] and [35] with
introducing a priority on the pairwise BV tests. This is useful
for time critical collision detections. In this algorithm, all pairs
of root passed from broad-phase are pushed to the queue and
given a priority. Up to the certain threshold time, priority
queue based traversal algorithm runs. When time is up,
objects are determined as colliding if they are not pruned yet.

When we perform intersection tests between different
objects, we need to bring those hierarchies to the common
representation ground. For this purpose, there are two
methods: the first is transforming one object’s hierarchy to the
other object’s frame (model space update) which provides a
performance and a fitting advantageous. The second is
transforming both objects’ hierarchy into the world coordinate
system (WCS) which is costly.

With movement or rotations of an object, BVH needs to be
realigned (refitting). Some BVHs do not need alignment such
as spheres and oriented bounding boxes (OBB). Spheres have
very good property that they are completely independent of
the orientation. In addition, with Welzl algorithm presented in
[42]-[44], finding better fitted spheres is easier and that makes
spheres preferable over other topological BVs. Update of BVs
to movements involves coordinate transformation and
realignment. This problem can be solved by refitting the BV
for the moved object. Notwithstanding, even though refitting
provides tighter fit and early pruning capability, it is not
preferred for computationally expensive simulations.

An ideal BVH preferred to be small size, to have small
height, to have good pruning capabilities, and to be balanced.
Small heights and balanced trees result performance gains.
Balanced trees provide a good overall worst-case seeking
complexity. Good pruning capabilities imply good
performance of a collision query. BVs comparisons should
have a capability of early rejection as much as possible. This
early rejection criterion depends on the topology choice of the
hierarchy (spheres, OBB, AABB etc.) and tighter fitting. In
overall, there is a tradeoff between BVH complexity and
performance [33]. Complex topology choices establish tighter
fitted BVs and so fewer overlap tests but causes performance
lost. On the other hand, less complex hierarchies provide
faster overlap test but less tight BVs. Using a simpler
geometry with cheaper overlap test is preferable for highly
dynamic environments even though this will cause
unnecessary overlap tests. The measurement of the tightness
of the BV is presented by [36].

Usually balanced binary trees are wanted since they have
good search properties. Zachmann et al. [37] proved that
quad-trees and/or octrees significantly faster than binary trees
for collision queries. Gundelman et al. [33] proved that OBBs
are superior over spheres and AABBs for surface based
BVHs. AABBs are preferred choice of deformable objects
[29], [38] since AABBs are cost effective for frequent
refitting operations in deformations. Thus, AABBs over
perform OBBs even though OBBs have better pruning
capabilities. However, for volume based methods, spheres are
the most suitable choice [34], [39],[52], and [40]. To increase
the pruning capability of the BVH, BV should be short and fat
rather than being long and thin. The long and thing topology
increases the chance of overlapping BV with the other BVs
which causes performance lost. In this sense, spherical or
cubic BVs will reduce possible overlapping with other BVs
which implies a better chance for pruning. Klosowski et al.
[41] introduces some criteria of partitioning of BVs to provide
better pruning capabilities. He proposed to choose splitting
plane orthogonal to local x, y, or z coordinate axis. This is
very simple and fast approach. Other splitting axis methods
are longest side method is another approach for finding
splitting axis by selecting the axis along which BV is longest.
Another simple method is using already existed axis of
bounding volume as splitting axis. In this, case BV cannot be
sphere since spheres do not have any associated axis. The last
and the most accurate method is statistic based method which
aligns the splitting axis along the axis where the covariance is

4049

the largest. Subsequent to splitting axis determination split
point needs to be chosen since there are infinitely many
numbers of possible splitting points along the splitting axis.
Again the choice for the point must be restricted to a small set
of points with the following strategies: object median, object
mean, spatial median, BV projection, and centroid
coordinates. Object median method is splitting at the object’s
median where calculated from primitives’ centers. Cormen et
al. [45] reduced the cost of median finding by using a
sophisticated method. Klosowski et al. [41] reports that using
the object mean is superior to using the object median since
resulting smaller volume trees with a lower number of
operations performed and with a better query times. Splitting
at the spatial median is another method which is equal to
splitting the volume to two equal parts. In this technique, split
point is found in constant time because this method only deal
with the BV not the data included in the BV. This approach is
used when the axis is selected from the parent volume such as
used in longest side rule. BV projection method splits BV
projection into evenly spaced points and instead of spending
the time for intelligent point guessing, it spends the time for
finding best splitting point among those evenly spaced points
by using brute force methodology. The centroid coordinates
method finds splitting point between random subset of the
centroid coordinates. Fig. 6. [3] shows some of these
methods.

Fig. 6. Splitting at (a) the object median, (b) the object mean, (c) the
spatial median

Deformable objects are very challenging for BVH.
Deformations can make representation of the object’s
geometry with BVH useless. Since it is impossible to
reconstruct the BVH for each time step from scratch for
complex objects and deformations, it is necessary to find
better approaches. [46]-[50], and [37] investigate faster
approach to refit the currently misaligned BVH tree by using
bottom-up update scheme. There are some drawbacks of these
works. One is coming from the nature of the bottom-up
scheme that update requires one to traverse the entire BVH.
The second problem with the bottom-up update is that not all
BV types can be updated very fast. The third problem with
bottom-up scheme is that pruning capabilities of BV can be
damaged during the update due to a possible increasing
among sibling BVs. Instead of bottom-up scheme top-down
scheme can be used in some certain situations; however, both
have deficiencies at certain situations. Therefore, [38]
proposed hybrid approach to benefit from both scheme
advantageous. Recently, deformable spanners [53] have been
proposed to encode all proximity information which may turn
out to be very useful for deformable and rigid body collision
detections. Deformable spanners are geometry independent
(means that the geometry can be open, close, convex or
concave) proximity queries with different resolutions that

makes the deformable spanners very useful for surgical
simulations. However, it may be difficult to get real time
performance out of the deformable spanners without further
algorithmic improvements.

Ultimate goal for collision detection researchers is
development of new algorithms that handle rigid and
deformable bodies, self collisions, convex and non-convex or
open and close geometries and process all in real-time. To that
end, there is still a long way to go.

IV. CONCLUSION

We have classified collision detection into two groups
broad and narrow phase. Spatial partitioning and bounding
volumes are well-known examples of the broad-phase.
Feature based (FB), simplex based (SB), ISB, volume based,
and bounding volume based algorithms are group of
algorithms in narrow-phase. FB approaches only works for
closed objects and it is not known how algorithm behaves to
the degenerate conditions. Problem with FB algorithms is that
it does not terminate when presented with penetrating
polyhedra. SB methods are only for convex objects. ISB
techniques require close objects in the scene and cannot detect
self collisions. Also, collisions that are about to happen or
have already occurred will not be detected in ISB. Therefore,
FB, SB, and ISB are not considerable for dynamic simulations
and deformations e.g. surgical simulations. Those methods do
not allow open objects which occur during the surgical
procedures such as cutting. With spatial partitioning, splitting
of polygons is unavoidable and determination of cell size is
very difficult. Therefore, when objects are close, determining
contact status is difficult. BVHs are generally most suitable
for collision detections but they are highly dependent to the
topology choice of the hierarchy. There is a trade off between
complexity of the topology of BV and construction cost. For
deformable objects, BVs require different kind of update
involving rebuilding, rebalancing, and refitting of BVH.
There is still no well-informed hierarchy update scheme for
deformations in that deformable spanners may introduce
solutions.

REFERENCES

[1] P. M. Hubbard, “Interactive Collision Detection”, In Proceedings of the
IEEE Symposium on Research Frontiers in Virtual Reality, 1993,
pp.24-32.

[2] Physics-Based Animation, Kenny Erleben et al. Charles River Media,
2005

[3] Real-time Collision Detection, Christer Ericson, Morgan Kaufman,
2005.

[4] Computational Geometry, M. de Berg, 1998, Computational Geometry
in C, O’Rourke, 2005.

[5] D. Baraff, A. Witkin, J. Anderson, and M. Kass, “Physical Based
Modelling”, SIGGRAPH Course Notes, 2003.

[6] M. C. Lin, and D. Manocha, “Efficient Contact Determination between
Geometric Models”, Technical Report TR94-024, The University of
North Carolina at Chapel Hill, Dept. of Computer Science, 1994.

[7] B. Mirtich, “Impulse Based Dynamic Simulation of Rigid Body
Systems”, Phd. Thesis, University of California, Berkley, 1996.

[8] M. Moore, and J. Williams, “Collision Detection and Response for
Computer Animation”, In Computer Graphics, vol. 22, pp. 289-298,
1988.

4050

[9] M. Lin and J. Canny, “A fast Algorithm for Incremental Distance
Calculation”, Proc. of the 1991 IEEE International Conference on
Robotics and Automation, pp. 1008-1014, 1991.

[10] B. Mirtich, “V-Clip: Fast and Robust Polyhedral Collision Detection”,
ACM Transactions on Graphics, vol. 17(3), pp. 177-208, 1998.

[11] S. A. Ehmann, and M. Lin, “Accelerated Proximity Queries between
Convex Polyhedra by Multi-level Voronoi Marching”, IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS
2000, vol. 3, pp. 2101-2106, 2000.

[12] S. A. Ehmann and M.C. Lin, “Swift: Accelerated Proximity Queries
between Convex Polyhedra by Multi-level Voronoi Marching”,
Technical Report, Computer Science Dept., University of North
Carolina at Chapel Hill, http://www.cs.unc.edu/~geom/SWIFT/, 2000.

[13] B. Benes and N. G. Villanueva, “GI_COLLIDE- Collision Detection
with Geometry Images”, In SCCG 2005, Proc. of the Spring
Conference on Computer Graphics, pp.95-102, 2005

[14] oss.sgi.com/projects/ogl-example/registry/ARB/occlusion_query.txt,
SGI 2005

[15] M. Shinya and M.C. Forgue, “Interference detection through
rasterization”, Journal of Visualization and Computer Animation 2, pp.
132-134, 1991

[16] K. Myszkowski, O.G. Okunev, and T. L. Kunii, “Fast Collision
Detection Between complex Solids using Rasterizing graphics
Hardware”, Visual Comput. 11, pp. 497-512, 1995

[17] J.-C. Lombardo, M.-P. Cani, and F. Neyret, “Real-time Collision
Detection for Virtual Surgery”, in proc. of Computer Animation,
Geneva, Switzerland, pp. 82-90, 1999

[18] G. Baciu and W.S.-K. Wong, “Hardware Assisted self collision for
deformable surfaces”, in Proc. of the ACM Symposium on Virtual
Reality Software and Technology (VRST), ACM press, pp. 129-136,
2002

[19] G. Baciu and W.S.-K. Wong, “Image based techniques in a hybrid
collision detector”, IEEE Trans. On Visualization and Computer
Graphics 9, pp. 254-271, 2003

[20] K. E Hoff, A. Zaferakis, M. Lin, and D. Manocha, “Fast and Simple 2D
Geometric Proximity Queries Using Graphics Hardware”, In Proc. Of
ACM Symposium on Interactive 3D Graphics, pp. 145-148, 2001.

[21] D. Knott and D. Pai, “Cinder: Collision and Interference Detection in
Real–time Using Graphics Hardware”, In Proc. of Graphics Interface
’03, 2003.

[22] B. Heidelberger, M. Teschner, and M. Gross, “Volumetric Collision
Detection for Deformable Objects”, Technical Report #395, Computer
Science Dept., ETH Zurich, 2003.

[23] B. Heidelberger, M. Teschner, and M. Gross, “Detection of Collisions
and Self-collisions Using Image-space Technique”, In Proc. WSCG,
pp. 145-152, Plzen, Czech Republic, 2004

[24] N. Govindraju, S. Redon, M. Lin, and D. Manocha, “CULLIDE:
Interactive Collision Detection between Complex Models in Large
Environments Using Graphics Hardware”, ACM
SIGGRAPH/Eurographics Graphics Hardware, 2003.

[25] N. Boldt and J. Meyer, “Self-intersections with CULLIDE”, DIKU
project # 04-02-19, the department of Computer Science at the
University of Copenhagen, 2004.

[26] E. Gilbert, D. Johnson, and S. Keerthi, “A Fast Procedure for
Computing the Distance Between Complex Objects in
Three-dimensional Space”, IEEE Journal of Robotics and Automation,
vol. 4, pp. 193-203, 1988.

[27] S. Cameron, “Enhancing GJK: Computing Minimum and Penetration
Distances Between Convex Polyhedra”, IEEE Int. Conf. Robotics and
Automation, vol. 4, pp. 3112-3117, Albuquerque, NM, USA,1997.

[28] G. v. d. Bergen, “A Fast and Robust GJK Implementation for Collision
Detection of Convex Objects”, Journal of Graphics Tools, vol. 4(2), pp.
7-25, 1999.

[29] G. v. d. Bergen, “Proximity Queries and Penetration Depth
Computation on 3D Game Objects”, Proc. Game Developers Conf.,
2001.

[30] G. v. d. Bergen, “Collision Detection in Interactive 3D Environments”,
Interactive 3D Technology Series, Morgan Kaufmann, 2003.

[31] E. Gilbert and Chek-P. Foo, “Computing the Distance between General
Convex Objects in Three-dimensional Space”, IEEE Transactions on
Robotics and Automation, vol. 6, no. 1, pp.53-61, 1990.

[32] E. Gundelman, R. Bridson, and R. Fedkiw, “Nonconvex Rigid
Bodieswith Stacking”, ACM Transaction on Graphics, Proc. of ACM
SIGGRAPH, 2003.

[33] S. Gottschalk, “Collision Queries Using Oriented Bounding Boxes”,
Phd. Thesis, Dept. of Computer Science, University of N. Carolina at
Chapel Hill, 2000.

[34] C. O’Sullivan, and J. Dinglina, “Real-time Collision Detection and
Response Using Sphere-trees”, 1999.

[35] J. Dingliana and C. O’Sullivan, “Graceful Degradation of Collision
Handling in Physically Based Animation”, Computer Graphics Forum
Proc. Eurographics, vol. 19, no. 3 , pp 239-247, 2000.

[36] G. Zachmann and E. Langetepe, “Geometric Data Structures for
Computer Graphics”, SIGGRAPH 2003 Course Notes, 2003.

[37] J. Mezger, S. Kimmerle, and O. Etzmuss, “Hierarchical Techniques in
Collision Detection for Cloth Animation”, Journal of Winter School of
Computer Graphics (WSCG) vol. 11, no. 2, pp. 322-329, 2003.

[38] T. Larsson and T. Akenine-Moller, “Collision detection for
continuously deforming bodies”, in Proc. of Eurographics, pp.
325-333, 2001

[39] P. M. Hubbard, “Approximating Polyhedra with Spheres for
Time-critical Collision Detection”, ACM Transactions on Graphics,
vol. 15, no. 3, pp.179-210, 1996.

[40] G. Bradshaw and C. O’Sullivan, “Adaptive Medial-xis Approximation
for Sphere-tree Construction”, ACM Transactions on Graphics, vol. 23,
no. 1, pp. 1-26, 2004.

[41] J. T. Klosowski, “Efficient Collision Detection for Interactive 3D
Graphics and Virtual Environments”, PhD thesis, State Univ. of New
York at Stony Brook, 1998.

[42] E. Welzl, “Smallest Enclosing Disks (balls and ellipsoids)”, In H.
Maurer, editor, New Results and New Trends in Computer Science,
LNCS, Springer 1991.

[43] M. D. Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
“Computational Geometry: Algorithms and Applications”,
Springer-Verlag, 1997.

[44] K. Fischer and B. Gartner, “The Smallest Enclosing Ball of Balls:
Combinatorial Structure and Algorithms”, Proc. of 19th Annual
Symposium on Computational Geometry (SCG), pp. 291-301, 2003.

[45] T. Cormen, C. Leiserson, and R. Rivest, “Introduction to Algorithms”,
MIT Press, 1990.

[46] G. v. d. Bergen, “Efficient Collision detection of Complex Deformable
Models Using AABB Trees”1997,

[47] P. Volino, and N. M. Thalmann, “Collision and Self-collision
Detection: Efficient and Robust Solutions for Highly Deformable
Surfaces”, Technical Report, MIRALab, 1998.

[48] P. Volino and N. M. Thalmann, “Virtual Clothing: Theory and
Practice”, Springer-Verlag Berlin Heidalbarg, 2000.

[49] R. Bridson, R. Fedkiw, and J. Anderson, “Robust Treatment of
Collisions, Contact and Friction for Cloth Animation”, Proc. of ACM
SIGGRAPH, vol. 21, no. 3, pp. 594-603, 2002.

[50] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, Laks
Raghupathi, A. Fuhrmann, Marie-Paule Cani, François Faure, N.
Magnetat-Thalmann, W. Strasser, "Collision Detection for Deformable
Objects", Eurographics State-of-the-Art Report (EG-STAR), 2004, pp
119-139.

[51] B. Heidelberger, M. Teschner, and M. Gross, "Detection of collisions
and self-collisions using image-space techniques". Journal of WSCG,
vol. 12, no. 1-3, 2004.

[52] T. Larsson and T. Akenine-Moller , “A dynamic bounding volume
hierarchy for generalized collision detection”, Computers & Graphics,
vol 30, no 3, pp 451-460, Elsevier Ltd, 2006.

[53] J. Gao, L. J. Guibas, and A. Nguyen, “Deformable spanners and
applications”, Computational Geometry: theory and applications, vol.
35, issue 1, pp. 2-19, 2006.

4051

View publication statsView publication stats

https://www.researchgate.net/publication/224299269

