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Abstract—A process of determining whether two or more 
bodies are making contact at one or more points is called 
collision detection or intersection detection. Collision detection is 
inseparable part of the computer graphics, surgical simulations, 
and robotics. There are varieties of methods for collision 
detection. We will review some of the most common ones. 
Algorithms for contact determination can be grouped into two 
general parts: broad-phase and narrow-phase. This paper 
provides a comprehensive classification of a collision detection 
literature into the two phases.  Moreover, we have attempted to 
explain some of the existing algorithms which are not easy to 
interpret. Also, we have tried to keep sections self-explanatory 
without sacrificing depth of coverage.  

I. INTRODUCTION

HEN given the two models and their placements in the 
world space, the simplest brute force approach to 
perform a collision query is to test each of the primitive 

segments in object A against each of the primitive segments of 
object B, requiring number of A’s primitive segments times 
number of B’s primitive segments overlap tests. We cannot 
perform exhaustive pair-wise testing on models which have 
thousands of primitives since a collision query needs to be 
performed in every simulation step in order to detect colliding 
objects. Animations can have many objects, all of which may 
have a complex geometry such as polygonal soups of several 
thousands facets. It is therefore computationally heavy burden 
to perform collision detection. Thus, to eliminate this 
computationally costly pair-wise tests some different 
algorithms proposed in the literature. 

Hubbard [1] was the first who classified the collision 
detection in terms of broad-phase and narrow-phase. Those 
concepts of broad-phase and narrow phase collision detection 
reduce the computational load by performing a coarse test in 
order to prune an unnecessary pair test. Broad-phase collision 
detection identifies disjoint groups of possibly intersecting 
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objects. On the contrary, pruning unnecessary primitive-pair 
test is narrow-phase collision detection. Most of the literature 
uses Hubbard’s broad and narrow phase collision detection 
scheme to classify collision detection algorithms [2][3]. The 
same classification technique will also be used throughout this 
survey. Some of the methods such as bounding volumes are 
included in both broad and narrow-phase collision detection. 

II. BROAD-PHASE COLLISION DETECTION

Broad-phase collision detection determines objects which 
should be tested with during the narrow-phase. Therefore, 
approximating objects with boxes makes broad-phase 
collision detection easier. To perform broad-phase collision 
detection, there are mainly three different kinds of algorithms: 
All-pair test (Exhaustive Search), sweep and prune 
(Coordinate Sorting), and hierarchical hash tables (multi-level 
grids).  

An exhaustive search is a brute-force approach which 
compares each object’s bounding volume with others’ 
bounding volumes. If algorithm finds colliding bounding 
volumes then starts further investigation with narrow-phase 
collision detection algorithms. Sweep and prune algorithm 
[5][6] projects every object’s bounding volume’s starting and 
ending points onto the coordinate axes. If there is intersection 
among the entire principal coordinate axes, then there is 
collision between the objects. Hierarchical hash tables are 
another approach in broad-phase [7]. This approach divides 
the entire scene into the same size grids along all the principal 
axes. All points overlaps with the given grid cell is identified 
by the algorithm. If there is more than one object sharing the 
same cell, then those objects are possibly colliding objects. 

III. NARROW-PHASE COLLISION DETECTION

Broad-phase lists pairs of possible colliding objects and 
narrow-phase inspects further each of these pairs and finally 
contact determination algorithms determine the exact 
collisions. Narrow-phase algorithms usually return more 
detailed information. That information can be later used for 
the computation of time of impact, collision response and 
forces, and contact determination. Algorithms in this category 
can be categorized into the four groups: feature-based, 
simplex-based, volume-based, and spatial data structures [8]. 

A. Feature-based Algorithms 

This kind of algorithms directly works on the geometric 
primitives of the objects. Well known examples are polygonal 
intersection [8], Lin-Canny [9], V-Clip[10], SWIFT[11][12]. 
Lin-Canny algorithm is the first feature-based algorithm in the 
literature. There are other feature tracking algorithms 
proposed based on Lin-Canny such as Voronoi-Clip (V-Clip) 
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and SWIFT. In real-time simulations, objects tend to change 
their orientations or rotations by small amounts from one 
frame to another (coherence). That coherence assumes that the 
closest points between two non-intersecting objects are 
located in the near vicinity of the closest points between the 
same objects located at the previous frame. However, for a 
polyhedron, even a minute change in orientation can cause a 
big change on closest points’ locations between consecutive 
frames. Therefore, for polyhedra, Lin et al. [9] proposed using 
the closest features (vertices, edges, or faces) rather than 
tracking closest points from one frame to another. A drawback 
for Lin-Canny is that it does not terminate when presented 
with penetrating polyhedra.  

Another feature based algorithm is V-Clip. It is based on the 
theorem which defines the closest points between two 
polyhedra in terms of the closest features of the pair of 
polyhedra. Figure 1. shows pair of 3D polyhedra satisfying the 
theorem.  F(X) and F(Y) are closest pair of features and P(X) 
and P(Y) are closest pair of points (not necessarily unique 
points) between two polyhedra X and Y. Red lines indicate 
Voronoi region for object X and yellow lines indicate Voronoi 
region of Y. The V-Clip starts with two features one from X 
and another from Y. Feature F(X) is edge E and feature F(Y)
is vertex V.  If P(X) is in Voronoi region of Y and P(Y) is in 
the Voronoi region of X, the F(X) and F(Y) are closest pair of 
features. In each iteration, the features are tested to see if they 
are satisfying the conditions at the theorem. If they satisfy the 
theorem, algorithm terminates and returns nonintersecting 
between two polyhedra. If the theorem does not satisfy, one of 
the features is updated with a neighboring feature. Neighbors 
of a feature are defined as:  

Definition: The neighbors of a vertex are the edges incident 
to the vertex, the neighbors of a face are the edges bounding 
the face, and the neighbors of an edge are the two vertices and 
the two faces incident to the edge. 

The V-Clip becomes trapped in a local minimum in the 
vertex-face state where the vertex lies below the supporting 
plane of the face and at the same time lies inside all of the 
Voronoi planes of Voronoi region. That can cause objects 
penetrations before collision detection. 

Figure 1. Closest pair of features and closest pair of points (P(X), P(Y)) for 
Vertex-Edge feature pair 

B. Simplex Based Algorithms 

The simplex is the convex hull of an affinely independent 
set of points. The GJK (Gilbert-Johnson-Keerthi) [26] is the 
well known ancestor of this group of algorithms [27]-[30]. 
GJK takes two sets of vertices as input and finds the Euclidean 
distance and closest points between the convex hulls. Thanks 

to Gilbert et al. [31], GJK was generalized to be applied to 
arbitrary convex point sets, not just to polyhedra. An 
important fact in GJK is that: it does not operate on the two 
input objects; however, operates on the Minkowski difference 
between the objects. Minkowski difference provides 
transformation of the problem from finding the distance 
between two convex sets to that of finding the distance 
between the origin and a single convex set. The GJK searches 
a sub-volume of the Minkowski difference object iteratively 
(each sub-volume being a simplex). We take a cue from the 
work of Ericson et al. [3] and clarify the GJK algorithm.  

Let A and B two convex point sets and x and y two position 
vectors corresponding to pairs of points in A and B 
respectively. The Minkowski difference is defined as 

{ : , }A B x y x A y BΘ = − ∈ ∈ . The GJK algorithm based 

on the fact that separation distance between two convex 
polyhedra A and B is equal to the distance between 
Minkowski sum and the origin as shown in Fig.   2. [3]  below. 

Fig.   2. Minkowski Difference  

Two convex objects collide if and only if their Minkowski 
difference contains the origin. Fig.   3. [3] illustrates how GJK 
algorithm finds a point closest to origin O. In this case, the 
distance of closest point to the origin is equal to the minimum 
distance between two convex polyhedra due to the Minkowski 
difference.   

Fig.   3. GJK Algorithm  

The algorithm arbitrarily begins with vertex C as the initial 
simplex set Q={C}. For a single-vertex simplex, vertex itself 
is the closest point to the origin X. Searching in the direction 
(from vertex C to the origin) results vertex D as a supporting 
point or extreme point at this direction.  So, D is added to the 
simplex set Q={C,D}. The point in convex hull Q closest to 
the origin is now E. Since both C and D are needed to express 
point E we keep these vertices in the simplex Q={C,D}. Now 
F is the extreme point in the direction from E to the origin. 
That results new convex hull Q, Q= {C,D,F}. The closest 
point to the origin from convex hull Q is now point G. Since 
representing point G is possible with only D and F, C is 
removed from the simplex, Q={D,F}. Now supporting vector 
is from point G to the origin and new extreme point is H. H is 
added to the simplex Q, Q={D,F,H}. The point on Q closest to 
the origin is now J. Since F and H are smallest set of vertices to 
represent J, D is removed from Q, Q={F,H}. After this point, 
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there is no vertex closer to the origin in direction from J to the 
origin. Therefore, J must be the closest point to the origin and 
the algorithm terminates.  

C. Image-Space Based Algorithms 

Image space base (ISB) techniques are computed by 
image-space occlusion queries which are convenient to 
implement on the graphics hardware (GPU). Therefore, ISB 
techniques are recently more preferred. Opposite to common 
belief, they can also be employed on the CPU rather than GPU 
such as [13]. Occlusion queries have lower bandwidth than 
buffer read-backs and thus more convenient for GPU 
implementations [14].  Frontiers of ISB methods include 
[15]-[18] and [19]-[23]. All these methods have several 
common drawbacks. They are much slower than hierarchical 
approaches. They usually have O(n) complexity. During the 
rendering, objects are discretized to the image space which 
causes erroneous representations. These errors depend on the 
size of the viewport, the internal representation of numbers, 
and the number of bits per pixel in the z-buffer. Therefore, the 
size of the viewport has significant impact on the 
performance. 

Cinder [21] is well known example of the ISB algorithms. It 
is based on 3D version of Jordan Curve Theorem [4]. It is a 
theorem in computational geometry that a semi infinite ray 
originating within a solid will intersect the boundary of the 
solid odd number of times as in Fig.   4. Cinder is handling both 
convex and non-convex geometries. The tests for collisions 
are performed in image space. The algorithm does not require 
any pre-processing or special data structures. It uses frame 
buffer operations to implement a virtual ray casting algorithm 
for every pixels that detect interference between objects. The 
edges of the objects are written to the depth buffer and the 
objects they penetrated each other are detected by using a 
virtual ray-casting algorithm. The number of polygons that the 
ray passes through is counted in such a way that if summation 
result for one ray is even, then the point is outside the object. 
In contrast, if the summation results un-even, then the point is 
inside the object and there is a collision. The algorithm uses a 
stencil buffer for counting the number of front and back facing 
polygons that the rays pass through. The values in the stencil 
buffer are increased for front-facing polygons and decreased 
for back-facing polygons. If at the end there is non-zero value 
in the stencil buffer, then edge in the specific pixel is inside an 
object. Colliding objects’ identifications’ numbers are kept in 
color-buffer. The algorithm’s running time is linear in the 
number of objects and the number of polygons existing in the 
objects. With this algorithm, collisions that are about to 
happen or have already occurred will not be detected. This 
occurs when objects’ very thin parts pass through each other 
in space of one frame. The object must be closed to get a 
correct result. The Fig.   5. shows an example of CINDER. 

CULLIDE [24] uses occlusion queries and one of the 
prominent examples of ISB methods. The graphics hardware 
is used only to detect potentially colliding objects, while 
triangle-triangle intersections are performed in the CPU. 
CULLIDE uses clever but simple lemma to prune the 

non-colliding objects from possibly colliding objects’ set. The 
lemma is: “An object A does not collide with a set of objects 
S, when A is fully visible with respect to S.” CULLIDE keeps 
potentially colliding objects in a set which initially includes 
each and every object in the scene. Then it prunes the 
primitives from a potentially colliding set by rendering in a 
two-pass algorithm; first rendering front and then reverse 
order. Throughout the rendering, visibility (occlusion) queries 
remove objects from potentially colliding list if the object is 
not visible. This strategy continues iteratively until no more 
changes are made in potentially colliding set (PCS). The 
primitives in the final PCS are then made for exact collision 
detection. Boldt et al. [25] extended CULLIDE to handle self 
collision tests. Even though this approach alleviates Cinder’s 
restrictions on object topology; CULLIDE’s effectiveness 
degrades dramatically when the density of the environment 
increases. 

Fig.   4. Jordan Curve Theorem 

Fig.   5. Cinder with Virtual semi-infinite ray casting  

D. Volume Based Algorithms 

Most of the volume based algorithms conceptually based on 
the same idea of the ISB techniques; however, they use 
different methods to compute layered depth images [51] and 
distance fields etc. These groups of algorithms are also 
suitable for GPU implementations. 
Gundelman et al. [32] is one of the volume based collision 
detection algorithm which assumes that A and B are objects in 
the scene and we are searching whether they are colliding or 
not. This algorithm works by taking vertices of A and looks 
them up in the signed distance function of B. After that, the 
vertices of B are looked up in the signed distance function of 
A. Each object is represented by a triangular mesh and the 
signed distance map. Thus, both the triangular mesh and 
signed distance grid are stored in object space. This means 
that when vertices of A looked up in B, then they must be 
transformed from object space A to objects space B. The 
drawback of this algorithm is that it is not tailored for 
detecting edge-edge intersections. 

E. Bounding Volume Hierarchies 

There are two types of spatial data structures for collision 
detection: spatial division and bounding volume hierarchies 
(BVH). Spatial partitioning recursively divides the space. On 
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the other hand, BVH recursively or iteratively partitions the 
object itself. With spatial partitioning, splitting of polygons is 
unavoidable. This causes increase of depth of the tree and 
performance lost. In addition, since cell size of the spatial 
partitioning cannot cover objects’ primitives tightly, when 
objects are close, determining contact status is difficult. On 
the contrary, BVs provide smaller and tighter hierarchies than 
spatial partitioning. In addition, BVHs are more applicable for 
general shapes than simplex based and feature based 
algorithms. BVH can be called as discrete representation of 
level of details of objects. At the first level, hierarchy includes 
one bounding volume which is very coarse representation of 
an object. Further levels include more detail representation of 
the object. The leaf level or finest level of the hierarchy 
generally includes the object primitives (lines, triangles, or 
tetrahedra). There is a parent-child relationship between 
succeeding levels with the topology of the tree. Bounding 
volume (BV) does not necessarily enclose its children’s 
bounding volume; instead it must enclose the geometry of an 
object included in the children BVs. 

Even though objects are not colliding, their BVs can 
collide. Therefore, we must look further down of the BVH to 
answer the question of whether objects are colliding or not. 
We do this by changing one of the root volumes by its 
children. Determining which root volume to descend is called 
traversal rule. Generally largest volume is chosen to descend 
to lower the chance of finding overlapping. If two volumes are 
equal then random choice is made.  Non-overlapping BVs are 
discarded from further consideration (pruning). At last in the 
traversal, if we reach to two leaf nodes from two distinct 
volumes, then we have two choices; whether testing two 
primitives are colliding (pairwise test) or testing one primitive 
with the other’s leaf bounding volume (primitive-volume 
test). If objects’ primitives are colliding, we have to test two 
primitives anyway. Thus, there is a tradeoff between the 
number of iterations and the complexity in the overlap tests.  

Gottschalk et al. [33] states that recursively traversing 
BVHs is often a bad choice since the number of primitives and 
the hierarchies can be quite large. Therefore, number of 
recursive calls would be huge; that causes memory stack 
overflows. This problem can be solved by using iterative 
traversal technique with first-in-first-out queue. The idea of 
using queue to escape from disadvantage of recursive nature 
of the algorithm is taken one step further by [34] and [35] with 
introducing a priority on the pairwise BV tests. This is useful 
for time critical collision detections. In this algorithm, all pairs 
of root passed from broad-phase are pushed to the queue and 
given a priority. Up to the certain threshold time, priority 
queue based traversal algorithm runs. When time is up, 
objects are determined as colliding if they are not pruned yet.

When we perform intersection tests between different 
objects, we need to bring those hierarchies to the common 
representation ground. For this purpose, there are two 
methods: the first is transforming one object’s hierarchy to the 
other object’s frame (model space update) which provides a 
performance and a fitting advantageous. The second is 
transforming both objects’ hierarchy into the world coordinate 
system (WCS) which is costly.  

With movement or rotations of an object, BVH needs to be 
realigned (refitting).  Some BVHs do not need alignment such 
as spheres and oriented bounding boxes (OBB). Spheres have 
very good property that they are completely independent of 
the orientation. In addition, with Welzl algorithm presented in 
[42]-[44], finding better fitted spheres is easier and that makes 
spheres preferable over other topological BVs. Update of BVs 
to movements involves coordinate transformation and 
realignment. This problem can be solved by refitting the BV 
for the moved object. Notwithstanding, even though refitting 
provides tighter fit and early pruning capability, it is not 
preferred for computationally expensive simulations.  

An ideal BVH preferred to be small size, to have small 
height, to have good pruning capabilities, and to be balanced. 
Small heights and balanced trees result performance gains. 
Balanced trees provide a good overall worst-case seeking 
complexity. Good pruning capabilities imply good 
performance of a collision query. BVs comparisons should 
have a capability of early rejection as much as possible. This 
early rejection criterion depends on the topology choice of the 
hierarchy (spheres, OBB, AABB etc.) and tighter fitting. In 
overall, there is a tradeoff between BVH complexity and 
performance [33]. Complex topology choices establish tighter 
fitted BVs and so fewer overlap tests but causes performance 
lost. On the other hand, less complex hierarchies provide 
faster overlap test but less tight BVs. Using a simpler 
geometry with cheaper overlap test is preferable for highly 
dynamic environments even though this will cause 
unnecessary overlap tests. The measurement of the tightness 
of the BV is presented by [36].  

Usually balanced binary trees are wanted since they have 
good search properties. Zachmann et al. [37] proved that 
quad-trees and/or octrees significantly faster than binary trees 
for collision queries. Gundelman et al. [33] proved that OBBs 
are superior over spheres and AABBs for surface based 
BVHs. AABBs are preferred choice of deformable objects 
[29], [38] since AABBs are cost effective for frequent 
refitting operations in deformations. Thus, AABBs over 
perform OBBs even though OBBs have better pruning 
capabilities. However, for volume based methods, spheres are 
the most suitable choice [34], [39],[52], and [40]. To increase 
the pruning capability of the BVH, BV should be short and fat 
rather than being long and thin. The long and thing topology 
increases the chance of overlapping BV with the other BVs 
which causes performance lost. In this sense, spherical or 
cubic BVs will reduce possible overlapping with other BVs 
which implies a better chance for pruning. Klosowski et al. 
[41] introduces some criteria of partitioning of BVs to provide 
better pruning capabilities. He proposed to choose splitting 
plane orthogonal to local x, y, or z coordinate axis. This is 
very simple and fast approach. Other splitting axis methods 
are longest side method is another approach for finding 
splitting axis by selecting the axis along which BV is longest. 
Another simple method is using already existed axis of 
bounding volume as splitting axis. In this, case BV cannot be 
sphere since spheres do not have any associated axis. The last 
and the most accurate method is statistic based method which 
aligns the splitting axis along the axis where the covariance is 
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the largest. Subsequent to splitting axis determination split 
point needs to be chosen since there are infinitely many 
numbers of possible splitting points along the splitting axis. 
Again the choice for the point must be restricted to a small set 
of points with the following strategies: object median, object 
mean, spatial median, BV projection, and centroid 
coordinates. Object median method is splitting at the object’s 
median where calculated from primitives’ centers. Cormen et 
al. [45] reduced the cost of median finding by using a 
sophisticated method. Klosowski et al. [41] reports that using 
the object mean is superior to using the object median since 
resulting smaller volume trees with a lower number of 
operations performed and with a better query times. Splitting 
at the spatial median is another method which is equal to 
splitting the volume to two equal parts. In this technique, split 
point is found in constant time because this method only deal 
with the BV not the data included in the BV. This approach is 
used when the axis is selected from the parent volume such as 
used in longest side rule. BV projection method splits BV 
projection into evenly spaced points and instead of spending 
the time for intelligent point guessing, it spends the time for 
finding best splitting point among those evenly spaced points 
by using brute force methodology. The centroid coordinates 
method finds splitting point between random subset of the 
centroid coordinates. Fig.   6. [3] shows some of these 
methods. 

Fig.   6. Splitting at (a) the object median, (b) the object mean, (c) the 
spatial median 

Deformable objects are very challenging for BVH. 
Deformations can make representation of the object’s 
geometry with BVH useless. Since it is impossible to 
reconstruct the BVH for each time step from scratch for 
complex objects and deformations, it is necessary to find 
better approaches. [46]-[50], and [37] investigate faster 
approach to refit the currently misaligned BVH tree by using 
bottom-up update scheme. There are some drawbacks of these 
works. One is coming from the nature of the bottom-up 
scheme that update requires one to traverse the entire BVH. 
The second problem with the bottom-up update is that not all 
BV types can be updated very fast. The third problem with 
bottom-up scheme is that pruning capabilities of BV can be 
damaged during the update due to a possible increasing 
among sibling BVs. Instead of bottom-up scheme top-down 
scheme can be used in some certain situations; however, both 
have deficiencies at certain situations. Therefore, [38] 
proposed hybrid approach to benefit from both scheme 
advantageous. Recently, deformable spanners [53] have been 
proposed to encode all proximity information which may turn 
out to be very useful for deformable and rigid body collision 
detections.  Deformable spanners are geometry independent 
(means that the geometry can be open, close, convex or 
concave) proximity queries with different resolutions that 

makes the deformable spanners very useful for surgical 
simulations. However, it may be difficult to get real time 
performance out of the deformable spanners without further 
algorithmic improvements.  

Ultimate goal for collision detection researchers is 
development of new algorithms that handle rigid and 
deformable bodies, self collisions, convex and non-convex or 
open and close geometries and process all in real-time. To that 
end, there is still a long way to go.  

IV. CONCLUSION

We have classified collision detection into two groups 
broad and narrow phase. Spatial partitioning and bounding 
volumes are well-known examples of the broad-phase.
Feature based (FB), simplex based (SB), ISB, volume based, 
and bounding volume based algorithms are group of 
algorithms in narrow-phase. FB approaches only works for 
closed objects and it is not known how algorithm behaves to 
the degenerate conditions. Problem with FB algorithms is that 
it does not terminate when presented with penetrating 
polyhedra. SB methods are only for convex objects. ISB 
techniques require close objects in the scene and cannot detect 
self collisions. Also, collisions that are about to happen or 
have already occurred will not be detected in ISB. Therefore, 
FB, SB, and ISB are not considerable for dynamic simulations 
and deformations e.g. surgical simulations. Those methods do 
not allow open objects which occur during the surgical 
procedures such as cutting. With spatial partitioning, splitting 
of polygons is unavoidable and determination of cell size is 
very difficult. Therefore, when objects are close, determining 
contact status is difficult. BVHs are generally most suitable 
for collision detections but they are highly dependent to the 
topology choice of the hierarchy. There is a trade off between 
complexity of the topology of BV and construction cost. For 
deformable objects, BVs require different kind of update 
involving rebuilding, rebalancing, and refitting of BVH. 
There is still no well-informed hierarchy update scheme for 
deformations in that deformable spanners may introduce 
solutions. 
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