CSSE232
Computer Architecture |

Exceptions in Pipelines

Outline

* Review: exceptions and interrupts
* Exceptions in multicycle datapaths
* Exceptions in pipelined

What are Exceptions and Interrupts

“Unexpected” events requiring change
in flow of control

— Different ISAs use the terms differently
Exception

— Arises within the CPU
* e.g., undefined opcode, overflow, syscall, ...

Interrupt
— From an external I/O controller

Dealing with them without sacrificing performance is
hard

How do we Handle Exceptions

In MIPS, exceptions managed by a System Control
Coprocessor (CPO)

Save PC of offending (or interrupted) instruction
— In MIPS: Exception Program Counter (EPC)

Save indication of the problem
— In MIPS: Cause register

Jump to handler at 8000 00180
Status[1] =1

What is the difference between
exception level and interrupt
enable?

* |Interrupt enable — turns on and off interrupts

e Exception level —when its 1 exception is being
handled. Further interrupts are disabled
(exception level overrides interrupt enable)

Types of exceptions

We will look at 2 exceptions
— Undefined instruction
— Overflow

Multi-cycle first
Where do these happen?
What can cause them?

Multicycle RTL

Em S T

IR = Mem[PC]
PC=PC+4

ID A = Reg[IR[25-21]]
B = Reg[IR[20-16]]
ALUOut = PC + (SE(IR[15-0]) << 2)

EX ALUOut=AopB ALUOuUL = If (A==B) PC = PC[31-28]
A +SE(IR[15-0]) then | |
PC=ALUOut (IR[25-0]<<2

MEM Reg[IR[15-11]] = MDR=Mem[ALUOut]
ALUOut Mem[ALUOut] =

WB Reg[IR[20-16]] = MDR

Types of exceptions

* Undefined instruction
— Happens in Decode
— Can be caused by any invalid instruction

* Overflow
— Happens in Execute
— Not caused by jumps, branches, lw/sw
— Only R-type add/sub

Types of exceptions

Decode stage
— Undefined instruction

Execution stage

— Overflow
Cause = 0 —undefined exception
Cause =1 - overflow

Undefined instruction

* What happens?

Undefined instruction

Cause gets O

EPC=PC-4

Exc. Level =1 (in status register)
PC = Address of exception handler

Overflow exception

* Almost same thing
— Cause gets 1
— EPC=PC-4
— Exc. Level =1 (in status register)
— PC = Address of exception handler

RTL with Exceptions (overflow)
m_m

IR = Mem|[PC]
PC=PC+4

ID A = Reg[IR[25-21]]
B = Reg[IR[20-16]]
ALUOut = PC + (SE(IR[15-0]) << 2)

EX ALUOut=AopB ALUOut = If (A==B) PC=PC[31-28] PC=0x8000
A +SE(IR[15-0]) then | | 0180
PC=ALUOut (IR[25-0]<<2 EPC=PC-4
Cause=0or1
Status =?

MEM Reg[IR[15-11]]= MDR=Mem[ALUOut]
ALUOut Mem[ALUOut] =

WB Reg[IR[20-16]] = MDR

The exception steps are done in one clock cycle.

Datapath changes

|
Op
[5-0] f
A
Jump >| 1
Instruction [25-0] address [31-0]
>\ 2
Instruction]
. [31-26] 1 5 PC [31-28]
M Instruction || Read. - M
ul_p=»] Address [25-21] register 1 i u
X : Read X
Instruction Read’ A
1 Memory 120 16] [g register 2 data 1 | L. 1
MemData >] 0 _ Registers — ALUOU]
InstrL11(5:t|061 L M Write Read B
Wit [15-0] Inks_)_trlﬁtion u register gata 2 »(0
rice ion X . e M
> oo Instruction 1. ; Write 4 wb| 1 y
register data »l2
Instruction!] P> 0 3
[15-0] M
u
X
»| Memory > 1
datal’ Sign™ 32
. t N\ [}
register N extond —
Instruction [5—0]

xcZ

Datapath changes

Add special cause register
Add special status register

Add logic to set cause register

Add exception handler address as input PC

Control changes

e Add exception control stage
— Set ALU to subtract PC values

— Update exception registers
— Update PC

e Can arrive at exception stage from
— Decode — undefined instruction
— Excecute — overflow

* Transition back to fetch stage
— Run exception handler

What if we ditched the cause register?

* Vectored Interrupts
— Jump to different address based on the cause

 Example:
— Undefined opcode: 0x8000 0180
— Overflow: 0x8000 0280

* MIPS

— Cause register (with a few exceptions)

e X386
— Uses vectored interrupts

Exceptions in a Pipeline

* Possible exception
— Invalid instruction
— Overflow
— Invalid memory address
— Invalid instruction address

80000180

IF.Flush

Exceptions in a Pipeline

EX.Flush

Instruction
memory

A

{ Hazard \
:‘ detection

ID.Flush

unit /

ID/EX
/\E I ey
Control > " M M »|\WB
X B Cause X]
0 EX EPC | 0= M
Shift M)
left 2 R |m
~ > > u
> > X
Registers '\i
> ALU >

\

Y

Yy

Data
memory

Y

MEM/WB
WB—e

xc =

Exceptions in a Pipeline

* Possible exception
— Invalid instruction (ID)
— Overflow (EX)
— Invalid memory address (MEM)
— Invalid instruction address (IF)

* Could generate 4 exception in one cycle!

Multiple Exceptions

* Pipelining overlaps multiple instructions
— Could have multiple exceptions at once
e Simple approach: deal with exception from earliest
Instruction
— Flush subsequent instructions
— “Precise” exceptions
* In complex pipelines
— Multiple instructions issued per cycle

— Out-of-order completion
— Maintaining precise exceptions is difficult!

Exceptions in a Pipeline

* Another form of control hazard
* Consider overflow on add in EX stage
add $1, $2, $1
— Prevent $1 from being clobbered
— Complete previous instructions
— Flush add and subsequent instructions
— Set Cause and EPC register values
— Transfer control to handler
* Similar to mispredicted branch
— Use much of the same hardware

80000180

IF.Flush

Pipeline with Exceptions

EX.Flush

Instruction
memory

A

{ Hazard \
:‘ detection

ID.Flush

unit /

ID/EX
/\E I ey
Control > " M M »|\WB
X B Cause X]
0 EX —|—> EPC | 0> M
Shift M)
left 2 _ L
- - > u
> > X
Registers o \ i
> ALU >

\

Y

Yy

Data
memory

Y

MEM/WB
WB—e

xc =

Pipeline with Exceptions

* Diagram doesn't show EPC=PC-4

 Possible solutions
— Add an ALU
— Pass original PC along

Exception Example

* Exception on add in

40 sub $11, $2, %4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 1w $16, 50(%$7)

e Handler

80000180 sw $25, 1000($%0)
80000184 sw $26, 1004($%0)

Exception Example

Iw $16, 50($7) : slt $15, $6, $7 : add $1, $2, $1 : or$13,... 1 and$12,...
I : EX.Flush I
IF.Flush ! ; : s
; ID.Flush : l |
! /~ Hazard ! ! !
! detection | . ! !
unit / Y ! \ :
M

IF{ID _'D— 0
4l

80000180 =

Data
memory

800

Clock 6

Exception Example

sw $25, 1000($0) bubble (nop) . bubble . bubble ,or$13, . ..
! | EX.Flush | :
IF.Flush ! | : :
; ID.Flush | | |
! Hazard X ! !
detection | : ! !
__unit__/ y : | :
ofx s |

|

ters

80000180 =1

Data
memory

1
Forwarding

unit)

Clock 7

Imprecise Exceptions

Just stop pipeline and save state
— Including exception cause(s)

Let the handler work out
— Which instruction(s) had exceptions
— Which to complete or flush

* May require “manual” completion

Simplifies hardware, but more complex handler
software

Not feasible for complex multiple-issue
out-of-order pipelines

Multicycle Interrupts

* Are interrupts very different from exceptions?

 What modifications would you make for an
interrupt?

Multicycle Interrupts

* Are interrupts very different from exceptions?
— Basically the same thing
— Show that interrupt happened (cause register)

* What modifications would you make for an
interrupt?

— Check before each new instruction

Start

Memory address »
computation o 0P
4'\}1\“0
2 ©°
ALUSIcA =1
ALUSTIcB =10
ALUOp =00
-
2 %\\,
=
] @/'
8‘ Memory Memory
—y access access
5
MemRead MemWrite
loD =1 lorD =1

Write-back step

RegDst=0
RegWirite

Instruction fetch

Instruction decode
register fetch

MemRead 1
ALUSrcA =0
loD =0 ALUSrcA=0
IRWrite »{ ALUSrcB =11
ALUSIcB = 01 ALUOp=00
ALUOp =00
PCWrite
PCSource = 00, N D
e —
Q//?"“Q «Q& -
]
AN © y
oW Branch é.- Jump
Execution completion completion
6 8
ALUSrcA =1
ALUSTICA =1 ALUSTCB_= 00 PCWirite
ALUSrcB = 00 ALUOp = 01 PCSource = 10
ALUOp= 10 PCWriteCond

PCSource = 01

<€

Check for
interrupts
before
fetching
next
instruction

R-type completion

RegDst =1
RegWrite
MemtoReg =0

MemtoReg=1

Pipeline interrupt

* Any changes from pipeline exceptions?

80000180

IF.Flush

Pipeline with Exceptions

EX.Flush

Instruction
memory

A

{ Hazard \
:‘ detection

ID.Flush

unit /

ID/EX
/\E I ey
Control > " M M »|\WB
X B Cause X]
0 EX —|—> EPC | 0> M
Shift M)
left 2 _ L
- - > u
> > X
Registers o \ i
> ALU >

\

Y

Yy

Data
memory

Y

MEM/WB
WB—e

xc =

Pipeline interrupt

* Any changes from pipeline exceptions?
— Don't flush
— Finish current instructions
— Go to handler
— Return to PC+4

Review and Questions

Review: exceptions and interrupts
Exceptions in multicycle datapaths
Exceptions in pipelined

Interrupts

