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* Review: exceptions and interrupts
* Exceptions in multicycle datapaths
* Exceptions in pipelined



What are Exceptions and Interrupts

“Unexpected” events requiring change
in flow of control

— Different ISAs use the terms differently
Exception

— Arises within the CPU
* e.g., undefined opcode, overflow, syscall, ...

Interrupt
— From an external I/O controller

Dealing with them without sacrificing performance is
hard



How do we Handle Exceptions

In MIPS, exceptions managed by a System Control
Coprocessor (CPO)

Save PC of offending (or interrupted) instruction
— In MIPS: Exception Program Counter (EPC)

Save indication of the problem
— In MIPS: Cause register

Jump to handler at 8000 00180
Status[1] =1



What is the difference between
exception level and interrupt
enable?

* |Interrupt enable — turns on and off interrupts

e Exception level —when its 1 exception is being
handled. Further interrupts are disabled
(exception level overrides interrupt enable)



Types of exceptions

We will look at 2 exceptions
— Undefined instruction
— Overflow

Multi-cycle first
Where do these happen?
What can cause them?



Multicycle RTL

Em S T

IR = Mem[PC]
PC=PC+4

ID A = Reg[IR[25-21]]
B = Reg[IR[20-16]]
ALUOut = PC + (SE(IR[15-0]) << 2)

EX ALUOut=AopB ALUOuUL = If (A==B)  PC = PC[31-28]
A +SE(IR[15-0]) then | |
PC=ALUOut (IR[25-0]<<2

MEM  Reg[IR[15-11]] = MDR=Mem[ALUOut]
ALUOut Mem[ALUOut] =

WB Reg[IR[20-16]] = MDR



Types of exceptions

* Undefined instruction
— Happens in Decode
— Can be caused by any invalid instruction

* Overflow
— Happens in Execute
— Not caused by jumps, branches, lw/sw
— Only R-type add/sub



Types of exceptions

Decode stage
— Undefined instruction

Execution stage

— Overflow
Cause = 0 —undefined exception
Cause =1 - overflow



Undefined instruction

* What happens?



Undefined instruction

Cause gets O

EPC=PC-4

Exc. Level =1 (in status register)
PC = Address of exception handler



Overflow exception

* Almost same thing
— Cause gets 1
— EPC=PC-4
— Exc. Level =1 (in status register)
— PC = Address of exception handler



RTL with Exceptions (overflow)
m_m

IR = Mem|[PC]
PC=PC+4

ID A = Reg[IR[25-21]]
B = Reg[IR[20-16]]
ALUOut = PC + (SE(IR[15-0]) << 2)

EX ALUOut=AopB ALUOut = If (A==B) PC=PC[31-28] PC=0x8000
A +SE(IR[15-0]) then | | 0180
PC=ALUOut (IR[25-0]<<2 EPC=PC-4
Cause=0or1
Status =?

MEM  Reg[IR[15-11]]= MDR=Mem[ALUOut]
ALUOut Mem[ALUOut] =

WB Reg[IR[20-16]] = MDR

The exception steps are done in one clock cycle.



Datapath changes
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Datapath changes

Add special cause register
Add special status register

Add logic to set cause register

Add exception handler address as input PC



Control changes

e Add exception control stage
— Set ALU to subtract PC values

— Update exception registers
— Update PC

e Can arrive at exception stage from
— Decode — undefined instruction
— Excecute — overflow

* Transition back to fetch stage
— Run exception handler



What if we ditched the cause register?

* Vectored Interrupts
— Jump to different address based on the cause

 Example:
— Undefined opcode: 0x8000 0180
— Overflow: 0x8000 0280

* MIPS

— Cause register (with a few exceptions)

e X386
— Uses vectored interrupts



Exceptions in a Pipeline

* Possible exception
— Invalid instruction
— Overflow
— Invalid memory address
— Invalid instruction address
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Exceptions in a Pipeline

* Possible exception
— Invalid instruction (ID)
— Overflow (EX)
— Invalid memory address (MEM)
— Invalid instruction address (IF)

* Could generate 4 exception in one cycle!



Multiple Exceptions

* Pipelining overlaps multiple instructions
— Could have multiple exceptions at once
e Simple approach: deal with exception from earliest
Instruction
— Flush subsequent instructions
— “Precise” exceptions
* In complex pipelines
— Multiple instructions issued per cycle

— Out-of-order completion
— Maintaining precise exceptions is difficult!



Exceptions in a Pipeline

* Another form of control hazard
* Consider overflow on add in EX stage
add $1, $2, $1
— Prevent $1 from being clobbered
— Complete previous instructions
— Flush add and subsequent instructions
— Set Cause and EPC register values
— Transfer control to handler
* Similar to mispredicted branch
— Use much of the same hardware
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Pipeline with Exceptions
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Pipeline with Exceptions

* Diagram doesn't show EPC=PC-4

 Possible solutions
— Add an ALU
— Pass original PC along



Exception Example

* Exception on add in

40 sub $11, $2, %4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 1w  $16, 50(%$7)

e Handler

80000180 sw  $25, 1000($%0)
80000184 sw  $26, 1004($%0)



Exception Example

Iw $16, 50($7) : slt $15, $6, $7 : add $1, $2, $1 : or$13,... 1 and$12,...
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Exception Example

sw $25, 1000($0) bubble (nop) . bubble . bubble ,or$13, . ..
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IF.Flush ! | : :
; ID.Flush | | |
! Hazard X ! !
detection | : ! !
\__unit__/ y : | :
ofx s |

|

ters

80000180 =1

Data
memory

1
Forwarding

unit )

Clock 7




Imprecise Exceptions

Just stop pipeline and save state
— Including exception cause(s)

Let the handler work out
— Which instruction(s) had exceptions
— Which to complete or flush

* May require “manual” completion

Simplifies hardware, but more complex handler
software

Not feasible for complex multiple-issue
out-of-order pipelines



Multicycle Interrupts

* Are interrupts very different from exceptions?

 What modifications would you make for an
interrupt?



Multicycle Interrupts

* Are interrupts very different from exceptions?
— Basically the same thing
— Show that interrupt happened (cause register)

* What modifications would you make for an
interrupt?

— Check before each new instruction
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Pipeline interrupt

* Any changes from pipeline exceptions?
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Pipeline interrupt

* Any changes from pipeline exceptions?
— Don't flush
— Finish current instructions
— Go to handler
— Return to PC+4



Review and Questions

Review: exceptions and interrupts
Exceptions in multicycle datapaths
Exceptions in pipelined

Interrupts



