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Class Status

* Next 3 days : Multicycle datapath

— Reading
* Multicycle datapath is not in the book!
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Outline

* Problems with single-cycle
* Steps
— |F, ID, EXEC, MEM, WB
 RTL (Register Transfer Language)

— Describe processor actions



Single Cycle Designh Problems

* What are they?



Single Cycle Designh Problems

* Fixed period clock
— Every instruction takes one clock cycle
— All cycles same length

— Cycle time set by longest instruction path (Iw)
* Some instructions could run faster
* What if we have very long instructions? (floating point)

 Many adders
— Duplicate hardware is a waste?



Improving Single Cycle

e Reduce hardware use?

e Reduce time use?



Improving Single Cycle

* Reduce hardware use?
— Very hard, all parts are needed

* Reduce time use?
— Variable length clock

* Longer for lw, shorter for branch
* Has been done, hard to do in practice
— Shorter clock cycles
* Break work into small steps
e Continue instruction if not finished after step



Multicycle

* Break instructions into steps
— Each step takes one cycle
— Each step needs approximately the same time

— Each step uses one piece of hardware

e Save instruction data between steps
— Save partial work at end of cycle
— Next cycle, continue instruction



PCSrc

Add

‘\v

PC

Read
address

Instruction

Instruction
memory

Registers
| Read
> register 1 Read
Read data 1
register 2
_E: Write Read
register  data 2
Write
> data
RegWrite|
1\6‘ Sign
*| extend

A
xc

32

M
u
X
Add AL
result
3] ALU operation MemWrite
MemtoRec
Address Readl_,
data M
u
Data X
_| Write memory
“| data

M

emRead

ALU 2ns

Mem 2ns

Reg 1ns



Breaking instructions into steps

* Our goalisto break up the instructions into steps so that
— each step takes one clock cycle
— the amount of work to be done in each step/cycle is about equal

— each cycle uses at most once each major functional unit so that
such units do not have to be replicated

— functional units can be shared between different cycles within
one instruction
 Data at end of one cycle to be used in next must be
stored !!



Breaking instructions into steps

We break instructions into the following potential execution
steps — not all instructions require all the steps — each step
takes one clock cycle

1. Instruction fetch and PC increment (IF)
Instruction decode and register fetch (ID)

Execution, memory address computation, or branch completion (EX)
Memory access or R-type instruction completion (MEM)

oW

Memory read completion (WB)

Each MIPS instruction takes from 3 — 5 cycles (steps)



Step 1: Instruction Fetch & PC
Increment (IF)

 Use PCto getinstruction and put it in the instruction register.
Increment the PC by 4 and put the result back in the PC.

* (Can be described succinctly using RTL (Register-Transfer Language):

IR = Memory[PC];
PC = PC + 4;



Step 2: Instruction Decode and Register
Fetch (ID)

 Read registers rs and rt in case we need them.
Compute the branch address in case the instruction is a branch.

* RTL:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]1];
ALUOut = PC + (sign-extend (IR[15-0]) << 2);



Step 3: Execution, Address Computation
or Branch Completion (EX)

 ALU performs one of four functions depending on instruction type
— memory reference:
ALUOut = A + sign-extend(IR[15-01]);
— R-type:
ALUOut = A op B;
— branch (instruction completes):

if (A==B) PC = ALUOut;
— jump (instruction completes):
PC = PC[31-28] || (IR(25-0) << 2)

Note that the PC is written twice!!



Step 4: Memory access or R-type
Instruction Completion
(MEM)

* Again depending on instruction type:
* Loads and stores access memory

— load
MDR = Memory [ALUOut];
— store (instruction completes)
Memory [ALUOut] = B;

* R-type (instructions completes)
Reg[IR[15-11]] = ALUOut;



Step 5: Memory Read Completion
(WB)

* Again depending on instruction type:
* Load writes back (instruction completes)
Reg[IR[20-16]]= MDR;

Important: There is no reason from a datapath (or control) point of
view that Step 5 cannot be eliminated by performing

Reg[IR[20-16] ]= Memory[ALUOut];
for loads in Step 4. This would eliminate the MDR as well.

The reason this is not done is that, to keep steps balanced in length,
the design restriction is to allow each step to contain at most one
ALU operation, or one register access, or one memory access.



Summary

Step
1: IF

2: ID

3: EX

4: MEM

5: WB

of Instruction Execution

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A =Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]
ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut=AopB ALUOut = A + sign-extend if (A ==B) then [PC =PC [31-28] Il
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)

jump completion

Memory access or R-type
completion

Reg [IR[15-11]] =
ALUOu

Load: MDR = Memory[ALUOut]
or
Store: Memory [ALUOut] = B

Memory read completion

Load: Reg[IR[20-16]] = MDR




Multicycle Approach
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Multicycle Approach

Note particularities of
multicyle vs. single-
diagrams

— single memory for data

and instructions

— single ALU, no extra adders

— extraregisters to
hold data between
clock cycles
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Multicycle Datapath
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Basic multicycle MIPS datapath handles R-type instructions and load/stores:
new internal registers and new multiplexors in ovals.




Multicycle Datapath

Instruction
— 0]

Memory
data
register

S
0 0
M Instruction Read M
u Address [25-21] register 1 u
X ; Read X
Instruction Read
1 Memory [20— 16] register 2 data 1 1
MemData . _ Registers
Instruction Write Read
[15-0] register  4atg 2 0
\é\;rtl;e |I"|StI'L:|Cti0n Write 4 1M
register 2 )L:
3

Zero

ALU ALu
result

ALUOU

Basic multicycle MIPS datapath handles R-type instructions and load/stores:
new internal registers and new multiplexors in ovals.




Multicycle Execution Step (1):
Instruction Fetch
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Multicycle Execution Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-211]; (A = Reg[rs])
B = Reg[IR[20-15]1; (B = Reg[rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2)
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ALUOut

Multicycle Execution Step (3):
Memory Reference Instructions

A + sign-extend (IR[15-0]);
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Multicycle Execution Step (3):
ALU Instruction (R-Type)

ALUOut = A op B
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Multicycle Execution Step (3):
Branch Instructions

1f (A == B) PC = ALUOut;
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Multicycle Execution Step (3):
Jump Instruction

PC = PC[31-28] concat (IR[25-0] << 2)
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Multicycle Execution Step (4):
Memory Access - Read (1w)

MDR = Memory[ALUOut];
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Multicycle Execution Step (4):
Memory Access - Write (sw)

Memory [ALUOut] = B;
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Multicycle Execution Step (4):
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOUT
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Multicycle Execution Step (5):
Memory Read Completion (1w)

Reg[IR[20-16]] = MDR;
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Review and Questions

* Problems with single-cycle
* Steps
e RTL



