CSSE232
Computer Architecture |

Multicycle Datapath

Class Status

* Next 3 days : Multicycle datapath

— Reading
* Multicycle datapath is not in the book!

How long do instructions take?

ALU 2ns
Mem 2ns
Reg File 1ns

Everything
else is freel

extend

PCSrc
M
Add u
ALU X
4 — Add o1t
Read ALUSTr ALU operation
Read > C 4 p
"> address register 1 Read MemWrite
| Read data 1 MemtoReg
Instruction -9 register 2
Write Registers g Address Rdezid
Instruction register data 2 ata
memory
Write
| data
Write Data
RegWrite data memory
16 Sign- 32 MemRead

How long do instructions take?

ALU 2ns
Mem 2ns jJ

Reg File 1ns - *

E thi .
verytning Read
Read -
PC re— address register 1 Read
° | Read data 1
else is free! nstruton (4| 922
. Write Registers g
Instructio register data 2
memory
| Write
data
RegWrite ’
16 32 MemRead

R-type? Branch? e
Store? Load?

Outline

* Problems with single-cycle
* Steps
— |F, ID, EXEC, MEM, WB
 RTL (Register Transfer Language)

— Describe processor actions

Single Cycle Designh Problems

* What are they?

Single Cycle Designh Problems

* Fixed period clock
— Every instruction takes one clock cycle
— All cycles same length

— Cycle time set by longest instruction path (Iw)
* Some instructions could run faster
* What if we have very long instructions? (floating point)

 Many adders
— Duplicate hardware is a waste?

Improving Single Cycle

e Reduce hardware use?

e Reduce time use?

Improving Single Cycle

* Reduce hardware use?
— Very hard, all parts are needed

* Reduce time use?
— Variable length clock

* Longer for lw, shorter for branch
* Has been done, hard to do in practice
— Shorter clock cycles
* Break work into small steps
e Continue instruction if not finished after step

Multicycle

* Break instructions into steps
— Each step takes one cycle
— Each step needs approximately the same time

— Each step uses one piece of hardware

e Save instruction data between steps
— Save partial work at end of cycle
— Next cycle, continue instruction

PCSrc

Add

‘\v

PC

Read
address

Instruction

Instruction
memory

Registers
| Read
> register 1 Read
Read data 1
register 2
_E: Write Read
register data 2
Write
> data
RegWrite|
1\6‘ Sign
*| extend

A
xc

32

M
u
X
Add AL
result
3] ALU operation MemWrite
MemtoRec
Address Readl_,
data M
u
Data X
_| Write memory
“| data

M

emRead

ALU 2ns

Mem 2ns

Reg 1ns

Breaking instructions into steps

* Our goalisto break up the instructions into steps so that
— each step takes one clock cycle
— the amount of work to be done in each step/cycle is about equal

— each cycle uses at most once each major functional unit so that
such units do not have to be replicated

— functional units can be shared between different cycles within
one instruction
 Data at end of one cycle to be used in next must be
stored !!

Breaking instructions into steps

We break instructions into the following potential execution
steps — not all instructions require all the steps — each step
takes one clock cycle

1. Instruction fetch and PC increment (IF)
Instruction decode and register fetch (ID)

Execution, memory address computation, or branch completion (EX)
Memory access or R-type instruction completion (MEM)

oW

Memory read completion (WB)

Each MIPS instruction takes from 3 — 5 cycles (steps)

Step 1: Instruction Fetch & PC
Increment (IF)

 Use PCto getinstruction and put it in the instruction register.
Increment the PC by 4 and put the result back in the PC.

* (Can be described succinctly using RTL (Register-Transfer Language):

IR = Memory[PC];
PC = PC + 4;

Step 2: Instruction Decode and Register
Fetch (ID)

 Read registers rs and rt in case we need them.
Compute the branch address in case the instruction is a branch.

* RTL:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]1];
ALUOut = PC + (sign-extend (IR[15-0]) << 2);

Step 3: Execution, Address Computation
or Branch Completion (EX)

 ALU performs one of four functions depending on instruction type
— memory reference:
ALUOut = A + sign-extend(IR[15-01]);
— R-type:
ALUOut = A op B;
— branch (instruction completes):

if (A==B) PC = ALUOut;
— jump (instruction completes):
PC = PC[31-28] || (IR(25-0) << 2)

Note that the PC is written twice!!

Step 4: Memory access or R-type
Instruction Completion
(MEM)

* Again depending on instruction type:
* Loads and stores access memory

— load
MDR = Memory [ALUOut];
— store (instruction completes)
Memory [ALUOut] = B;

* R-type (instructions completes)
Reg[IR[15-11]] = ALUOut;

Step 5: Memory Read Completion
(WB)

* Again depending on instruction type:
* Load writes back (instruction completes)
Reg[IR[20-16]]= MDR;

Important: There is no reason from a datapath (or control) point of
view that Step 5 cannot be eliminated by performing

Reg[IR[20-16]]= Memory[ALUOut];
for loads in Step 4. This would eliminate the MDR as well.

The reason this is not done is that, to keep steps balanced in length,
the design restriction is to allow each step to contain at most one
ALU operation, or one register access, or one memory access.

Summary

Step
1: IF

2: ID

3: EX

4: MEM

5: WB

of Instruction Execution

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A =Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]
ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut=AopB ALUOut = A + sign-extend if (A ==B) then [PC =PC [31-28] Il
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)

jump completion

Memory access or R-type
completion

Reg [IR[15-11]] =
ALUOu

Load: MDR = Memory[ALUOut]
or
Store: Memory [ALUOut] = B

Memory read completion

Load: Reg[IR[20-16]] = MDR

Multicycle Approach

| PC

PCSrc

Add

4

| Read

address

Instruction

Instruction
memory

L

Add_AL
result

3] ALU operation

MemWrite

Read

Al
ddress data

Data
Write Mmemory

Registers

Read
—>| register 1 Read ALLIJSrC
Read data 1
register 2
Write Read
register data 2 ’\lf'
Write X
| data >
RegWritel
1\6 Sign 32
¥\ extend

data

MemtoRec

SN

MemRead

Single-cycle datapath

Multicycle Approach

Note particularities of
multicyle vs. single-
diagrams

— single memory for data

and instructions

— single ALU, no extra adders

— extraregisters to
hold data between
clock cycles

PCSrc
pr— |
M
Add u
X
AL
4= >Addresult
»
Read reasiers s 3| ALU operation MemWrite
L|pc k4, | Read register 1 o 4 ALLIJ rc
address Read data 1 MemtoRec
| register 2 > -
NStrUCtion fem _ ALU ALU
rgiSter datas v resu —p Address P8
Instruction g. u / '\L/Jl
memory \é\gt';e X Data X
. ! Write Mmemory
Regertel data
16 . 32
N Sign
™ extend MemRead
Single-cycle datapath
) Inrs(:rlijcttic;n
giste Data
PC Address | |
A
Instructi Register #
Memory "TUSO" — Registers DALY ALUOUIH
Memory Register #
Dat | data e _,E -
ata ;
register Register #

Multicycle datapath (high-level view)

Multicycle Datapath

Instruction
— 0]

Memory
data
register

S
0 0
M Instruction Read M
u Address [25-21] register 1 u
X ; Read X
Instruction Read
1 Memory [20— 16] register 2 data 1 1
MemData . _ Registers
Instruction Write Read
[15-0] register 4atg 2 0
\é\;rtl;e |I"|StI'L:|Cti0n Write 4 1M
register 2)L:
3

Zero

ALU ALu
result

ALUOU

Basic multicycle MIPS datapath handles R-type instructions and load/stores:
new internal registers and new multiplexors in ovals.

Multicycle Datapath

Instruction
— 0]

Memory
data
register

S
0 0
M Instruction Read M
u Address [25-21] register 1 u
X ; Read X
Instruction Read
1 Memory [20— 16] register 2 data 1 1
MemData . _ Registers
Instruction Write Read
[15-0] register 4atg 2 0
\é\;rtl;e |I"|StI'L:|Cti0n Write 4 1M
register 2)L:
3

Zero

ALU ALu
result

ALUOU

Basic multicycle MIPS datapath handles R-type instructions and load/stores:
new internal registers and new multiplexors in ovals.

Multicycle Execution Step (1):
Instruction Fetch

Memory [PC] ;
PC + 4;

IR
PC

Instruction I

A
Mem Write RN1 RN2 WN

ADDR . RD1 9P A
Memory Registers

M
RD wD

PC+4 wD RD2
MemRead RegWrite

?

ALU
ouT

Multicycle Execution Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-211]; (A = Reg[rs])
B = Reg[IR[20-15]1; (B = Reg[rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2)

IIQ Instruction 1
> ! .
Branch
5 5 5 Operati
¢ i i 4 Reg[rs] pe 3|on Target
PC| v Mem Write RN1 RN2 WN Address
» ADDR Redi RD1 ™ A y Zero
Memory M egisters
RD =+ D yua wD i ALU
PC+4 R >
WD rRD2 9 B T
MemRead RegWrite
4 4 Reg[rt]

ALUOut

Multicycle Execution Step (3):
Memory Reference Instructions

A + sign-extend (IR[15-0]);

Instruction 1

o=

is is 3> Reglrs]

!
PC 4 ol ADDI\Rﬂemerte
Memory
RD
PC+4 WD
|‘ MemRead
f

RN1 RN2 WN

Registers RD1

wD

RD2
RegWrite

f

Mem.
Address

- ALU

ouT

Multicycle Execution Step (3):
ALU Instruction (R-Type)

ALUOut = A op B

I Instruction 1

M P E L rears

R-Type
PC| v Mem Write RN1 RN2 WN Result
| ADDR Registers RD1 9 A Y
Memory M WD 9
RD P D A P o SLU
R UT

PC+4 WD RD2 B
MemRead RegWrite
1 1 Reg]rt]

Multicycle Execution Step (3):
Branch Instructions

1f (A == B) PC = ALUOut;

I Instruction 1

—» R -
. Branch
| F T reatmt | e |
P Mem Write RN1 RN2 WN
> Cly »| ADDR _ co1 bl A Address
Memory M Registers
1 RO+ D rug WD | ALU
R ouT

T t
arge WD RD2 | B
Address MemRead RegWrite
3) Reg[rt]

Multicycle Execution Step (3):
Jump Instruction

PC = PC[31-28] concat (IR[25-0] << 2)

I Instruction 1
—» R . .
| A
\
PC ¥ MemWrite RN1 RN2 WN
= | ADDR] RD1
Memory M Registers
RD —~» D Y WD ALY
Jump WD R ouT
RD2
Address |‘ Mem Read RegWrite

Multicycle Execution Step (4):
Memory Access - Read (1w)

MDR = Memory[ALUOut];

I Instruction I

R .
! is is is Mem.
PC| ¥ MemWrite RN1 RN2 WN Address
- »| ADDR _ ro1 bl A
Memory Registers
i'. WD ALU
" * our

Data

PC+4 wD RD2 B
Mem Read RegWrite
f Mem. ?

Multicycle Execution Step (4):
Memory Access - Write (sw)

Memory [ALUOut] = B;

I Instruction I

-» R ,
| I
PC v MemWrite RN1 RN2Z WN
»| ADDR Registers RD1
Memory M WD 9
RD > D A. ALU
R ouT

PC+4 wD RD2
Mem Read RegWrite

Multicycle Execution Step (4):
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOUT

I Instruction I
—-» R ~ ~
| I
R-Type
PC| ¢ Mem Write RN1 RN2 WN Result
»| ADDR Reai RD1 9 A
Memory M egisters
RD =+ D r g WD > gblTJ
R
PC+4 WD rRD2 > B
MemRead RegWrite

Multicycle Execution Step (5):
Memory Read Completion (1w)

Reg[IR[20-16]] = MDR;

- R
PC . 4 MemWrite RN1 RN2 WN
»| ADDR Reagisters RD1 A
Memory g
RD WD

RD2

RegWrite

PC+4 wD
MemRead
f Data

Review and Questions

* Problems with single-cycle
* Steps
e RTL

