
CSSE 232
Computer Architecture I

Running a Program

1 / 15

Class Status

Reading for today

• 2.12, 2.13, 2.14, B.1-5

2 / 15

Outline

• Compilers

• Assemblers

• Linkers

• Loaders

3 / 15

Translation and Startup in C

Loader

C program

Compiler

Assembly language program

Assembler

Object: Machine language module Object: Library routine (machine language)

Linker

Memory

Executable: Machine language program

FIGURE 2.21 A translation hierarchy for C. A high-level language program is fi rst compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the machine
code into the proper memory locations for execution by the processor. To speed up the translation process,
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use
linking loaders that perform the last two steps. To identify the type of fi le, UNIX follows a suffi x convention
for fi les: C source fi les are named x . c , assembly fi les are x . s , object fi les are named x . o, stati cally linked
library routines are x . a , dynamically linked library routes are x . s o, and executable fi les by default are called
a . o u t . MS-DOS uses the suffi xes .C, .ASM, . OB J , . L I B, . DL L, and . EXE to the same effect. Copyright ©
2009 Elsevier, Inc. All rights reserved.

4 / 15

Compiliers

• Early software was written primarily in assembly language
• Limited memory

• Definition of compiler:
A program (set of programs) that transforms high level source
code written within a programming language (such as C) to
assembly

5 / 15

Compiliers

• First compiler written by Grace Hopper for the A-0
programming language (1952)

• The compiler itself was written using assembly language

• First self-hosting compiler developed in a high level language
was for the Lisp (1962)

• Usually written in the language that they compile
• C compiler written in C
• First compiler for a language would have to be compiled in

another compiler (bootstrapping problem)

6 / 15

Compiler Structure

• Input is high level code (C, etc.)

• Checks syntax and semantics, performs type checks
• Generates errors

• Optimizes code

• Translates the optimized code into assembly code

• You can make a compiler in CSSE 404: Compiler
Construction!

7 / 15

Assembler

• Translates the assembly language into the appropriate binary
equivalents (object file)

• Most assembler instructions represent machine instructions
one-to-one

• Pseudo-instructions: figments of the assembler’s imagination
• $at (register 1): assembler temporary

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

8 / 15

Object Files

• Determine the addresses corresponding to the different labels

• Object file contains
• Object File Header: described contents of object module
• Text segment: translated instructions
• Static data segment: data allocated for the life of the program
• Relocation info: for contents that depend on absolute location

of loaded program
• Symbol table: global definitions and external refs
• Debug info: for associating with source code

9 / 15

Linker

• Links object files together to produce an executable image
• Merges segments
• Resolve labels (determine their addresses) - example in

branches and jumps
• Patch internal and external references
• Determine memory locations each module will occupy

• Executable file has same format as object file but with no
unresolved references

10 / 15

Dynamic Linking

• Only link/load library procedure when it is called
• Windows: Dynamic Link Library (dll)
• Unix: Shared Object (so)

• Different from static linking
• Requires procedure code to be relocatable
• Avoids image bloat caused by static linking of all (transitively)

referenced libraries
• Can automatically use new library versions

11 / 15

Loading a Program

• Load from image file on disk into memory

1 Read header to determine segment sizes
2 Create virtual address space
3 Copy text and initialized data into memory

• Or set page table entries so they can be faulted in

4 Set up arguments on stack
5 Initialize registers (including $sp, $fp, $gp)
6 Jump to startup routine

• Copies arguments to $a0, ...and calls main
• When main returns, do exit syscall

12 / 15

Review and Questions

• Compilers

• Assemblers

• Linkers

• Loaders

13 / 15

Program demo

Demo of compiling, assembling, and linking

14 / 15

Project

Project details on website

• Write assembly code for the relprime() function.

15 / 15

