CSSE 232

Computer Architecture |

Other Architectures

Class Status

Reading for today
e 2.16-17

22

Outline

Load-store

Accumulator

Memory-to-Memory
Stack
Advantages/Disadvantages

Load-Store architectures

o All operations occur in registers

e Register-to-register instructions have three operands per
instruction

e Special instructions to access main memory

Other Architectures

e Accumulator
e Memory-to-memory
e Stack

22

Accumulator Architecture

o All operations use an accumulator register
e Operands come from the accumulator or memory

e Result of most operations is stored in the accumulator

6 /22

Memory-to-Memory Architecture

e Similar to load-store architectures, but no registers

e All three operands of each instruction are in memory

22

Stack Architecture

All operations occur on top of the stack

Only push and pop access memory

All other instructions remove their operands from the stack
and replace them with the result

The implementation uses a stack for the top two entries

Accesses that use other stack positions are memory references

Examples

e Want to execute the statement
a=>b+ c;

e a, b, and c are variables in memory

Accumulator

10/22

Accumulator

load AddressB # Acc = Memory[AddrB] or Acc = B
add AddressC # Acc = B + Memory[AddrC] or Acc = B + C
store AddressA # Memory[AddrA] = Acc or A =B + C

10/22

Memory-to-Memory

11/22

Memory-to-Memory

add AddressA, AddressB, AddressC

11/22

Stack

12/22

Stack

push AddressC # Top = Top+4; Stack[Top] = Memory[AddrC]

push AddressB # Top = Top+4; Stack[Top] = Memory[AddrB]

add # Stack[Top-4] = Stack[Top] + Stack[Top-4];
Top = Top—4

pop AddressA # Memory[AddrA] = Stack[Top]; Top = Top - 4

Load-Store

13/22

Load-Store

load rl1 AddressB # rl1 = Memory[AddressB]
load 12 AddressC # r2 = Memory[AddressC]
add r3 rl r2 # r3 =11+ r2

store r3 AddressA # Memory[AddressA] = r3

13 /22

Group Assignment

e What do you think are the advantages/disadvantages of each
of the types of architectures?

14 /22

Advantages and Disadvantages

Stack Advantages
e Short instructions.

Stack Disadvantages

e A stack can't be randomly accessed

e Hard to generate efficient code

e The stack itself is accessed every operation and becomes a
bottleneck

Accumulator Advantages
e Short instructions

Accumulator Disadvantages

e The accumulator is only temporary storage so memory traffic
is the high for this approach.

15 /22

Advantages and Disadvantages

Load-Store Advantages

o Makes code generation easy
e Data can be stored for long periods in registers.

Load-Store Disadvantages

o All operands must be named leading to longer instructions.

Memory-to-Memory Advantages
e Simple processor design
e Memory-to-Memory Disadvantages

e Same as L+S
e Bottleneck at memory access

16

22

Alternative designs

Complete Instruction Set Computer (CISC)
e Examples
e IBM 360, DEC VAX, Intel 80x86, Motorola 68xxx
o Features

e Varying instruction lengths
e Memory locations as operands
e Source operand is also the destination

Reduced Instruction Set Computer (RISC)

e Examples
e MIPS, Alpha, PowerPC, SPARC

e Load/store
e Same instruction lengths

e Longer code programs

17 /22

Hello world in x86 for Linux

section .data ; section for initialized data
str: db 'Hello world!', 0Ah ; message with new—line at the end
str_len: equ $ — str ; calcs string length by subtracting
; this' address ($) from string address
section .text ; this is the code section
global _start ; -start is the entry point
_start: ; procedure start
mov eax, 4 ; specify the sys_write function code
mov ebx, 1 ; specify file descriptor stdout
mov ecx, str ; move string start address to ecx register
mov edx, str_len ; move length of message
int 80h ; tell kernel to perform the system call
mov eax, 1 ; specify sys_exit function code
mov ebx, 0 ; specify return code for OS
int 80h ; tell kernel to perform system call

18 /22

Hello world in MIPS for SPIM

.data
msg: .asciiz "Hello, world!”
.text
.globl main
main:
la $a0,msg
li $v0,4
syscall
jr $ra

19 /22

Hello world in PS2 MIPS for Linux

hello.S by Spencer T. Parkin

.rdata
.align

hello: .asciz

.align

length: .word
.text
.globl
.ent
main:

move

la

lw

li

syscall

|
i
.end

2
"Hello, world!\n"
4

— hello

main
main

a0, $0
al,hello
a2, length
vO,__NR_write
v0,0

ra

main

From http://tldp.org/HOWTO/Assembly-HOWTO/mips.html

FF I FFHFF R

begin read—only data segment
because of the way memory is built
a null terminated string

because of the way memory is built
length = IC — (hello—addr)

begin code segment

for gcc/ld linking

for gdb debugging info.

load stdout fd

load string address

load string length

specify system write service

call the kernel (write string)
load return code

return to caller

for dgb debugging info.

20/22

Review and Questions

Load-store

Accumulator

Memory-to-Memory
Stack
Advantages/Disadvantages

21/22

Project time

Work on relprime ()

22 /22

