
CSSE 232
Computer Architecture I

I/O and Addressing

1 / 21

Class Status

Reading for today

• 2.9-2.10, 6.6 (optional)

2 / 21

Outline

• I/O

• More memory instructions

• Addressing modes

• Jump and branch instructions

3 / 21

Input and Output

• How the processor communicates with the outside world

• Input
• Keyboard
• Mouse
• Network card

• Output
• Display / Graphics card
• Printer
• Network card
• Sound card

4 / 21

Performing I/O

• I/O port
• I/O devices are assigned to an I/O port
• Use specific I/O instructions to access I/O ports

• Memory-mapped I/O
• Reserve a portion of memory space for device I/O
• Use regular memory instructions to access

5 / 21

I/O ports

• I/O devices are assigned a port ID

• CPU has special instructions to read and write to I/O ports

• Data can then be sent and received by devices

6 / 21

Memory Mapped I/O

• Designate a portion of memory space to be for I/O

• Device memory and registers are mapped to this space

• Use normal memory instructions to read and write data

• A special piece of hardware monitors memory operations

• If regular memory space is accessed
• Read and write as normal

• If I/O space is accessed
• Intercept memory read/write
• Redirect to actual device memory

• I/O mapping can be disabled and addresses revert to regular
memory

7 / 21

Polling and Interrupts

• Polling
• Devices set flag indicating they need to send/receive data
• Processor frequently polls devices
• Checks if any I/O devices need attention, responds

• Interrupt
• Device set interrupt flag and special status register
• Processor is forced to stop executing normal code
• Jumps to special interrupt handling code
• Responds to device interrupt

8 / 21

More Memory Instructions

• MIPS can work with other memory sizes: bytes, shorts

• lb : load byte into lowest register byte

• sb : store lowest register byte into memory

• lh : load half into bottom register half

• sh : store lower register half into memory

• ld : load double word

• sd : store double word

• Upper bits are sign extended

9 / 21

J-Type

• Last instruction type

• Used for jumps
• Jump only needs an address
• No other values

op (6) target (26)

10 / 21

Addressing Modes

Related instructions

• ori

• addi

• jr

• lw

• sw

• beq

• bne

• j

11 / 21

PC-Relative Addressing

• Branch address calculated as

1 Sign extend instruction constant
2 Shift left 2 times (multiply by 4)
3 Sum result with PC (actually PC+4)

• Allows branching within ±215 instructions

• Example: beq, bne

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address

FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Copyright © 2009
Elsevier, Inc. All rights reserved.

12 / 21

Program Counter (PC)

• Special register that points to current instruction

• jal saves PC+4 into $ra

13 / 21

Direct Addressing (also called Register)

• Register value allows access to 232 locations/values

• Example: jr

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address

FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Copyright © 2009
Elsevier, Inc. All rights reserved.

14 / 21

Pseudo-Direct Addressing

• Jump address is calculated as

1 Take 26 bits from instruction constant
2 Shift left 2 times (multiply by 4)
3 Concat top 4 bits of the PC as MSBs

• Allows branching to 226 instructions

• Example: j

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address

FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Copyright © 2009
Elsevier, Inc. All rights reserved.

15 / 21

Immediate Addressing

• Operand is a constant within the instruction

• Some instructions sign extend (addi, slti)

• Some zero-extend (ori, andi, sltiu)

• Allows access to values in range [0, 216) or [−215, 215)

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address

FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Copyright © 2009
Elsevier, Inc. All rights reserved.

16 / 21

Base / Displacement Addressing

• Memory address calculated as

1 Sign extend instruction constant
2 Add to register value

• Register allows access to 232 locations

• Constant allows access to ±215 locations relative to base

• Require word (4 byte) alignment: lw, sw

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address

FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Copyright © 2009
Elsevier, Inc. All rights reserved.

17 / 21

Example

What would be the machine language equivalent (in decimal) of
the following code? Assume the Loop code starts on location
80000 in memory.

Loop : s l l $t1 , $s3 , 2
add $t1 , $t1 , $s6
lw $t0 , 0($t1)
bne $t0 , $s5 , Exit

add i $s3 , $s3 , 1
j Loop

Exit :

18 / 21

Example

addr instruction format

80000 0 0 19 9 2 0

80004 0 9 22 9 0 32

80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

19 / 21

Branching Far Away

• What would you change if the bne statement needed to
branch to 221 instructions before or after the branch?

• What would you change if the bne statement needed to
branch to 230 instructions before or after the branch?

• Have the bne go to a beq, resulting in up 2 ∗ 215 distance
• Have the bne go to a j, for a distance of 215 + 226

• Load the goal address in a register and have the bne go to a jr

20 / 21

Branching Far Away

• What would you change if the bne statement needed to
branch to 221 instructions before or after the branch?

• What would you change if the bne statement needed to
branch to 230 instructions before or after the branch?

• Have the bne go to a beq, resulting in up 2 ∗ 215 distance
• Have the bne go to a j, for a distance of 215 + 226

• Load the goal address in a register and have the bne go to a jr

20 / 21

Review and Questions

• I/O

• More memory instructions

• Addressing modes

• Jump and branch instructions

21 / 21

