CSSE232 Computer Architecture

Performance

Class status

- Reading for today:
 - Sections 1.4-1.9

• Lab 2 due soon

Class status

 What should you put in a comment at the top of your lab code?

Your team member names!

Outline

- Performance
 - Measures of performance
 - Calculating CPU time
 - Instruction count and CPI
 - Amdahl's Law
 - Examples on the board

Computer Performance

What are the measures of performance?

Computer Performance

- What are the measures of performance?
 - Many, many possible measures
 - Energy use, reliability, size, etc.
 - In this class we will use execution time

- Methods of calculation
 - Relative performance
 - Comparing code segments

Relative Performance

- "X is n time faster than Y"
- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A= 15s / 10s = 1.5
 - So A is 1.5 times faster than B

$$\frac{Performance_x}{Performance_y} = \frac{ExecutionTime_y}{ExecutionTime_x} = n$$

CPU Time

Performance improved by

- Reducing number of clock cycles
- Increasing clock frequency
- Hardware designer must often trade off clock rate against cycle count

$$CPU\ Time = CPU\ Clock\ Cycles \times Clock\ Cycle\ Time$$

$$CPU \, Time = \frac{CPU \, Clock \, Cycles}{Clock \, Freq}$$

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles
- How fast must Computer B's clock be?

$$Clock \ Freq_A = \frac{Clock \ Cycle_A}{CPU \ Time_A}$$
 $6s = \frac{1.2 \times Clock \ Cycle_A}{Clock \ Freq_B}$ $2 \times 10^9 = \frac{Clock \ Cycle_A}{10s}$ $Clock \ Freq_B = \frac{1.2 \times 20 \times 10^9}{6s}$ $= 4,000,000,000 = 4 \text{GHz}$

Instruction Count and CPI

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

$$ExecTime = Instruction\ Count \times CPI \times \frac{1}{Clock\ Freq}$$

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

$$\begin{aligned} \text{CPU Time}_{A} &= \text{Instruction Count} \times \text{CPI}_{A} \times \text{Cycle Time}_{A} \\ &= I \times 2.0 \times 250 \text{ps} = I \times 500 \text{ps} \\ \text{CPU Time}_{B} &= \text{Instruction Count} \times \text{CPI}_{B} \times \text{Cycle Time}_{B} \\ &= I \times 1.2 \times 500 \text{ps} = I \times 600 \text{ps} \\ \hline \text{CPU Time}_{A} &= \frac{I \times 600 \text{ps}}{I \times 500 \text{ps}} = 1.2 \end{aligned}$$

Performance Summary

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c

$$CPU Time = \frac{Instructions}{Program} \times \frac{Clock \ cycles}{Instruction} \times \frac{Seconds}{Clock \ cycle}$$

Pitfall: Amdahl's Law

 Improving an aspect of a computer and expecting a proportional improvement in overall performance

$$T_{improved} = \frac{T_{affected}}{improvement factor} + T_{unaffected}$$

Pitfall: Amdahl's Law

- Example: multiply instructions account for 80s of the total 100s program time
 - How much improvement in multiply performance to get 5× overall?

5x improvement = 100s / 5 = 20s

$$20s = \frac{80s}{n} + 20s$$
 • Can't be done!

Corollary: make the common case fast

CPI Example

 Alternative compiled code sequences using instructions in classes A, B, C

Class	А	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- Sequence 1: IC = 5
 - Clock Cycles= 2×1 + 1×2 + 2×3= 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles= 4×1 + 1×2 + 1×3= 9
 - Avg. CPI = 9/6 = 1.5

Examples Handout on the board

Review and Questions

- Performance
 - Measures of performance
 - Calculating CPU time
 - Instruction count and CPI
 - Amdahl's Law
 - Examples on the board