CSSE232
Computer Architecture

Logic and Decision Operations

Class status

 Reading for today:
— Sections 2.6-2.7

* Due today
— HWO

e Lab O status?

Outline

Logical operations
Shift operators
Pseudo instructions
Immediates
Alighnment
Conditionals

Loops

Logical Operations

Operation C Java MIPS

Shift left << << S11

Shift right >> >>> srl, sra
Bitwise AND & & and, and
Bitwise OR | | or, ori
Bitwise NOT ~ ~ nor

s Useful for extracting and inserting groups of bits in a word

 shamt: how many positions to shift
* Shift left logical

Shift Operations

— Shift left and fill with O bits
— sll by i bits multiplies by 2

* Shift right logical

— Shift right and fill with O bits

— srl by i bits divides by 2’ (unsigned only)
Shift right arithmetic : shift right, fill with sign bits

op

I's

rt

rd

shamt

funct

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

Logical Operations

* Logical immediate instructions
— ori
— andi

— XOri

* How big are immediate values?

Immediates

 What do you expect?
addi StO, Szero, 1

* What about
addi StO, Szero, -1

 What about
ori St0, Szero, 0x8080

Immediates

e Zero extend or sigh extend?

* Arithmetic instructions are sign extended
* Logical instructions are zero extended

Pseudo Instructions

* The assembler is a program that translates
— add S$t0, StO, St1

* Into this
— 0x01094020

|t will also replace 'pseudo instructions' with
real instructions

— lab0, p2.asm: |i $t3, 0x12340028

Big Immediates

e What if we need more than 16 bits?

Big Immediates

* What if we need more than 16 bits?
— i : pseudo instruction, composed of...

* |ui
* Ori
 What is the advantage of using a pseudo
instruction?

 What is the disadvantage?

Big Immediates

* |slui a good compromise?

Big Immediates

* |slui a good compromise?

Percentage of
immediates

45%
40% F
35% |
Floating-point average
30%
25%

20%

15%

Integer average

10%

5%

O oo 1 1 1 1 1 1]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bits needed for immediate
© 2007 Elsavier, Inc. All rights resarved.

MIPS alignment restrictions

* The starting address has to be divisible by 4
— Different from x86 — load from anywhere

* Simple — makes wiring easier

* Big Endian vs Little Endian
— 4 bytes in a word
— Which byte is on the big end vs the little end?
— MIPS — Big Endian
— X86 — Little Endian
— Problems when passing data from different machines

Big Endian and Networking

Convert between host and network format
— Host format is processor specific
— Network format is Big Endian

htons
htonl
ntohs
ntohl

Conditional Operations

Branch to labeled instruction if condition is true
— Otherwise, continue sequentially

beqrs, rt, L1

— if (rs == rt) branch to instruction labeled L1;

bners, rt, L1

— if (rs !=rt) branch to instruction labeled L1;

j L1

— unconditional jump to instruction labeled L1
Labels do not have to be capitalized

Basic branching

e Ccode
if(a == 0)
a=a+1;
a=a+1;

* MIPS assembler? (a in St0)

Basic branching

e Ccode
if(a == 0)
a=a+1;
a=a+1;

* MIPS assembler? (a in St0)
bne St0, Szero, L
add StO, St0, 1
L: add StO, St0, 1

More complex if

e Ccode:

it (i==j) f = g+h;
else f = g-h; 0 |

_ f/ g, - in SSO, SS]., f=g+h

 Compiled MIPS code: |

bne $s3, $s4, Else
add $s0, $s1, $s2
j EXit
Else: sub $s0, $s1, $s2
Exit: ..

Conditionals in ARM

* Every instruction encoding in ARM includes a
4-bit field that represents a condition code.

Conditional jumps

* |-type instructions

* Immediate field holds branch target
— Is 16 bits enough?

Conditional jumps

* |-type instructions

* Immediate field holds branch target
— |s 16 bits enough?

30
25% I
20% |
Integer
Percentage 159 average

of distance
Floating-point average

10% [

00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bits of branch displacement
© 2007 Elsavier, Inc. All rights resarved.

e Ccode:
while (n !'= 0) {

n--;

e Compiled MIPS code (if n in St0):
LOOP: beq $tO, $0, DONE

addi $t0, $t0, -1
i LOOP

DONE: ..

Compiling Loop Statements

e Ccode:
while (save[i] == k) 1 += 1;

—iin Ss3, k in Ss5, address of save in Ss6

* Compiled MIPS code:

Loop: slIl $t1, $s3, 2
add $t1, $tl, $s6
Tw $t0, 0(%$tl)
bne $t0, $s5, Exit
addi $s3, $s3, 1
J Loop

Ex1t: ..

More Conditional Operations

Set result to 1 if a condition is true
— Otherwise, setto 0

sltrd, rs, rt

—if(rs<rt)rd=1; elserd =0;

slti rt, rs, constant

— if (rs < constant) rt = 1; else rt = 0;

Use in combination with beq, bne

s1t $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Review and Questions

Logical operations
Shift operators
Immediates
Alignment
Conditionals
Loops

