CSSE232
Computer Architecture

Reading

* For today:
— Sections 2.1-2.5

* For next time:
— Appendix B 9-10
— | strongly encourage you to read this tonight!
— Bring computer for lab!

Outline

 Introduction to ISAs

* MIPS
— Registers
— Register operands
— Memory operands
— Representing instructions

Outline

* Review: Process of generating an executable
* Review: Introduction to ISAs
 MIPS

— Registers

— Register operands

— Memory operands

— Representing instructions

High-level swap(int v[], int k)

language {int temp;
program temp = v[k];
(in C) vlk] = v[k+1]1;

vik+1] = temp;

Assembly swap:

language muli $2, $5.,4

program add $2, $4,%2
(for MIPS) Tw $15, 0($2)

Tw $16, 4($2)
sw o $16, 0($2)
sw o $15, 4($2)
Jjr $31

Y

Binary machine 00000000101000010000000000011000

language 00000000000110000001100000100001
program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Instruction Set

The set of instructions of a computer

Different computers have different instruction
sets

— But with many aspects in common

Early computers had very simple instruction
sets

— Allowed simplified implementations

Many modern computers also have simple
Instruction sets

The MIPS Instruction Set

* Used as the example throughout the book

e Typical of many modern ISAs
— See MIPS Reference Data tear-out card
— Appendixes B and E

* We will look at
— Assembly format
— Registers and memory use
— Machine code format

Assembler

e a=b+c;

e d=e-f;

Assembler

*a=b+g;
—adda, b, c

e d=e-f;
—subd, e, f

Assembler

*a=b+g;
—adda, b, c

e d=e-f;
—subd, e, f

* Whatare a, b, ... f?

Registers

Hardware on CPU
Very fast small memories

MIPS has 32

We will denote registers with 'S
— So, SO through $31
— We will give names to them later

Assembler

e a=b+c;
—adda, b, c
—add $1, S2, S3

c d=e-f;
—subd, e, f
—sub $4, S5, S6

Arithmetic Operations

 Add and subtract, three operands

— Two sources and one destination

add a, b, ¢ # a gets b + c

e All arithmetic operations have this form
* Design principle?

Example #1

* Ccode:
f=(0@+h) -0+ 73);
* Compiled MIPS code:

add $t1, $t1, $t2 #temp tl=g+h
add $t3, $t3, $t4 #temp t3=1+]
sub $t0, $tl1, $t3 #f=t1l-t3

Register Operands

* Arithmetic instructions use register
operands

 MIPS has a 32 x 32-bit register file

— Use for frequently accessed data
— Numbered 0 to 31

— 32-bit data called a “word”
e Assembler names

— StO, St1, ..., St9 for temporary values
— Ss0, Ss1, ..., Ss7 for saved variables

Register Usage

Register # Register Name

0 zero Hardwired to zero
1 at For assembler use
2 vO Return values from
3 vl procedure calls

4 a0

5 al Arguments passed to
6 a2 procedure calls

7 a3

Register Usage

Register # Register Name

8 t0

9 tl

10 t2

11 t3 Temporary values
12 t4 (caller saves)
13 t5

14 t6

15 t7

Register Usage

Register # Register Name

16 sO

17 sl

18 s2

19 s3 Save values
20 s4 (callee saves)
21 s5

22 s6

23 s/

Register Usage

Register # Register Name

24 t8 Temporary values
75 t9 caller saves

26 kO Reserved for OS
27 K1 Kernel

28 gp Pointer to global area
29 sp Stack pointer

30 fp Frame pointer

31 ra Return address

Example #2

 Ccode:
= (g + h) - G+ D3
f,g, h,i,j in S$sO, Ss1, Ss2, Ss3, Ss4
 Compiled MIPS code:

add $t0, $s1, $s2 #temp tO
add $tl1, $s3, $s4 #temp tl
sub $s0, $t0, $t1 #f = tO0 - t

Memory Operands

* Programs often store lots of data
— 32 general registers, only 18 for user
— Need another place to store data

* Main memory used for composite data
— Arrays, structures, dynamic data

* To apply arithmetic operations
— Load values from memory into registers
— Store result from register to memory

Memory Operands

e Memory is byte addressed
— Each address identifies an 8-bit byte

* Words are aligned in memory

— Address must be a multiple of 4
— We will be using words in this class!

 MIPS is Big Endian
— Most-significant byte at least address of a word
— cf. Little Endian: least-significant byte at least address

Example #3

* Ccode:
g =h + A[8];
—gin $s1, hiin $s2, base address of A in $s3

 Compiled MIPS code:

— Index 8 requires offset of 32
* 4 bytes per word

Tw $t0, 32($s3) # load word
add $s1, $s2, $tO

Example #4

* Ccode:

A[12] = h + A[8];

— hin Ss2, base address of A in Ss3
 Compiled MIPS code:

— Index 8 requires offset of 32

Tw $t0, 32($s3) #1load word
add $t0, $s2, $tO
sw $t0, 48($s3) #store word

Registers vs. Memory

* Registers are faster to access than memory

* Operating on memory data requires loads and
stores
— More instructions to be executed

 Compiler use registers for variables as much
as possible

— Only spill to memory for less frequently used
variables

— Register optimization is important!

Registers vs. Memory

* Quiz 43
— Why not keep all values in registers or memory?

Need to get values...

e Code:i=i+1
e How to do in MIPS?

Need to get values...

e Code:i=i+1
e How to do in MIPS?

* Need to get values into registers, some how...

Immediate Operands

Very common to use constants in programs

— Constant value can be supplied with instruction
— Called: immediate value

Example of constant data specified in an instruction
addi $s3, $s3, 4

No subtract immediate instruction!

— Just use a negative constant
addi $s2, $s1, -1

The Constant Zero

* MIPS register O (Szero) is the constant O

— Cannot be overwritten

e Useful for common operations

— E.g., move between registers

add $t2, $sl1, $zero

Representing Instructions

e How?

Representing Instructions

* Instructions are encoded in binary
— Called machine code

e MIPS instructions

— Encoded as 32-bit instruction words

— Small number of formats encoding operation code
(opcode), register numbers, ...

e Register numbers
— St0 — St7 are registers 8 — 15
— St8 — St9 are registers 24 — 25
— S$s0 — Ss7 are registers 16 — 23

Instruction types

* 3 types of instructions in MIPS
— R-types
— |-types
— J-types

* Each type has a different format
e All are 32 bits long

MIPS R-format Instructions

* |nstruction fields
— op: operation code (opcode)
— rs: first source register number
— rt: second source register number
— rd: destination register number
— shamt: shift amount (00000 for now)
— funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-format Example

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2

special-op Ssi Ss2 Sto 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

00000010001100100100000000100000, = 02324020,

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions

— rt: destination or source register number
— Constant: -2 to +21> -1
— |f address: offset added to base address in rs

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

I-format Example

e addi Ss0, Ss1, 2

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits
op $s1 $s0 0x2
001000 10001 10000 0000 0000 0000 0010

One more type:] types

* Take a look at your green sheet

e Jump (j) and Jump and Link (jal)
— Opcode (j = 2, jal = 3)
— 26 bit address

 What about jr?

— Its an R-type instruction

Recap

* Process of generating an executable
* Introduction to ISA
 MIPS

— Registers

— Register operands

— Memory operands

— Representing instructions

Recap

* Introduction to ISA

* MIPS
— Registers
— Register operands
— Memory operands
— Representing instructions

MIPS reference

e Green sheet
* Page 135
* Appendix B-50

