CSSE 232
Computer Architecture |

Verilog

What it is

Verilog is hardware description language
e Describes the functions of a hardware circuit

e Can be used to test circuits also

e Looks similar to C (+, -, !=, ~, etc)

e Multiple parts can run in parallel (just like the datapath)

)

10

Basic syntax
e Verilog doesn't use braces ({, }), instead uses 'begin’ and
'end’
e Components are enclosed in module tags

e A list of inputs and output follow the module name
Verilog:

module namegoeshere(an_input, an_output);

//logic
endmodule

C:

int namegoeshere(int an_input, int* an_output)

//logic

3/10

Modules

e Functional unit in verilog

Module name followed by list of all inputs and outputs
Defined inputs and output (always wires)

Local variables for module

Module logic (initials, always, or assign)

module awesomeUnit(a, b, c);
input a;
input b;
output c;
assign ¢ = a && b;
endmodule

10

Execution blocks

e Two types of execution: initial and always

initial runs one time and stops

always runs over and over

can be triggered on an event with @ (see control example)
also 'assign’ for continuous assignment (combinational logic)

module modtest;
always begin clk="clk; #b5; end
//or
initial begin
clk = 0;
#5;
clk = 1;
#5;
clk = 0;
#5;
clk = 1;
end
endmodule

10

Variables

e Two types of variables: wire and reg

e Wire types are just wires, used for combinational logic

e Regs are similar to registers, used for combinational or
sequential

e Can be busses with [x:y] notation

e Two types of assignment: blocking (=) and non-blocking (<=)

e Blocking: nothing else happens until the value is assigned
e Non-blocking: the assignment happens while everything else is
happening

e Values are specified as s'bxx for size s, base b, value xx

6/10

Variables

Verilog
C
module modtest;
setup goes here int functest() {
//blocking assign 255 //all assigns block
//blocking assign 1337 //C can't do binary
//non—blocking assign 7 short a = Oxff;
reg a = 16'hff; int = 1337;
reg b = 32'd1337; char = 7;
reg ¢ <= 8'b00000111; }

endmodule

Time

Unless you indicate otherwise, everything happens at the same
time!

Blocking assignments are serialized (block next action)

Non-blocking assignments are parallelized (do not block)

A single module can have multiple execution paths
o All execution in a module happen in parallel!

Indicate a delay with the # operator
e #5 //wait 5ns

Tasks

Non-synthesizable concepts: cannot be expressed in hardware; host
system will execute

e $urite : like printf
e $display : like printf with an implied newline

e $finish : stop the simulation

10

Conditions and loops

e Similar to C
e if(i==0) begin ... end
o for(i=0; i<16; i=i+1) begin ... end
e while(i<10) begin ... end

e Other constructs

o forever: like always block
e repeat: fixed number of repeats

initial begin

clk = 0;
forever begin repeat(9) begin
#5; $display (" Everything is awesome!”);
clk = “clk; end
end
end

10/10

