

Table of Contents
Introduction ... 3

Description ... 3

Instructions .. 3

Description ... 3

Design .. 3

Implementation ... 4

Testing .. 5

Component Testing.. 5

Implementation Testing .. 5

Datapath Testing .. 6

Unique Features ... 8

Single Instruction Format .. 8

Single Programmer Accessible Register .. 8

Subroutine Return Values and Arguments Placed on Stack .. 8

Extra Features .. 9

Assembler .. 9

Assembler Pseudo-instructions ... 10

Assembler Arguments.. 10

Design Document... 11

Design Journals .. 11

Instruction Set .. 12

RTL.. 14

Datapath .. 16

Components ... 16

Introduction
Description
Our processor implements an accumulator design, which includes a register which is the basis
for most of our instructions. We included special registers such as the BA, SA, stack pointer and
register address, which all serve to make instructions easier to both run and understand. These
registers alongside memory will be able to perform conditional, algorithmic, and logical
operations in order to support any type of program written for it. Our design excels at having lots
of pseudo instructions, so programmers using our processor are not confused by the more
complicated instructions.

Instructions
Description

Our design boasts a total of 27 instructions, which all serve to make any program imaginable
work on our processor. With these 27 instructions we’ve made our processor extremely versatile
for both programs and even pseudo instructions

Design

We decided to go with only one instruction type, which we named the Universal Type (U-Type)
and it takes in a 6-bit opcode and a 10-bit Immediate and/or Address. We decided to go with
only one because it makes it much easier to understand exactly what each instruction does,
which makes programming in our processor very easy.

Here is a visualized model of our U-Type instruction.

Opcode Immediate/Address

6 10

To help better understand our instruction design, I have included a couple of instructions with
explanations below:

ADD m This instruction would Add the value in the address m
and put the result into the accumulator

BEZ Test This instruction would check if the accumulator equaled
zero and if it did it would branch to the label Test

SL 2 This instruction would shift the value in the accumulator
by 2

JUMP GCD This instruction would set the PC to the address at the
label GCD

Implementation
The implementation for each instruction took a lot given that each instruction did something
different. So, we decided to build a Datapath and then spilt it up into parts that we could
implement and test separately. We had 5 implementation steps for our Datapath, which were

1. Control Control was our basis for controlling every
part of the data path, which is why this was

one of the few separate implementation plans

2. ALU/ALUOut ALU and the register ALUOut were
combined because ALUOut heavily

depending on whatever the ALU outputted

3. Instruction Memory/PC PC and Instruction were combined because
PC determined the next instruction that would

run through the Datapath

4. Data Memory Data memory was the other implementation
step that only included one component. This
was because Data Memory was fairly large

and our team needed it to work alone before it
was connected to anything else.

5. Combing Factors This step of the implementation plan was

mostly combining sign extenders, shifters,
concatenation components, etc. to the other

implementation plans

Testing

Testing was extensive when it came to our Datapath given the fact that we would like for every
part of the Datapath to work. We tested each component individually. Once every component
worked, we tested the implementation plans and lastly after those were done being tested we
fully tested the Datapath with the instructions and their translations below.

Component Testing

Here we will provide some examples of some of the components tested and how exactly we tested
them

Sign Extender With the sign extender we made sure to test putting in both a
negative and positive value to ensure that the extension worked

with both zeros and one’s

ALU With the ALU we decided to test all the ALU’s opcodes to make
sure it functioned as it should.

Instruction Memory With instruction memory we made sure that if we passed in

instructions address it would output that instructions’ bits

Control With control we tested different opcodes and ensured that they
all outputted the correct control bits

Implementation Testing

Each part of the implementation was tested to make sure connecting different components together
didn’t break anything significant

1. Control As pointed out in the above control test, an
opcode was passed through, and we ensured that
each opcode corresponded to the correct control

signals

2. ALU/ALUOut This implementation plan test was basically
testing the ALU to make sure its opcodes worked,
and then using that output and storing it inside of

ALUOut

3. Instruction Memory / PC With instruction memory we made sure to make
tests of code snippets, and then ensure that the

instruction and PC matched.

4. Data Memory Testing Data memory consisted of ensuring that

passing in a memory address and data would
write that passed in data into the specified

memory address.

5. Combing Factors The combining factors were mostly tested with
Datapath, and Component based testing.

Datapath Testing

With Datapath testing, after each step of our implementation passed testing, we passed code snippets
of an array of our instructions to make sure each instruction worked both individually and in
combination with others.

The code snippets used to test the Datapath are provided below:

Datapath Testing
Arithmetic Memory Subroutine

ADDIMM 5
AccOut = 5

SUBIMM 2
AccOut = 3

ORIMM 50
AccOut = 51

ANDIMM 30
AccOut = 18

CMPE 18
AccOut = 1

ORIMM 35
AccOut = 35

CMPLT 100
AccOut = 1

ORIMM 35
AccOut = 35

CMPLT 30
AccOut = 0

ORIMM 8
AccOut = 8

SL 1
AccOut = 16

SR 2
AccOut = 4

DEFINE x, y

ANDIMM 0
ORIMM 4

STORE x
AccOut = 4
x = 4

ADDIMM 2
AccOut = 6

STORE y
y = 6

LOAD x
AccOut = 4

ADD y
AccOut = 10

SUB x
AccOut = 6

AND x
AccOut = 4

OR y
AccOut = 6

AccOut-- until AccOut
= 1

LOOP:

ALLOCATE 2

ANDIMM 0
ORIMM 55
AccOut = 55

PUSH 0
Mem[0] = 55
AccOut = 55

ANDIMM 0
ORIMM 45
AccOut = 45

PUSH 1
Mem[1] = 45
AccOut = 45

JUMPL ADD_FUNCTION
PC -> ADD_FUNCTION

PULL -1
AccOut = 100

ANDIMM 0
ORIMM 50

DEFINE b

ADD_FUNCTION:
PULL 1
AccOut = 45

STORE b
b = 45

 CMPE 1
BNEZ BREAK
LOAD y
SUBIMM 1
STORE y
JUMP LOOP

BREAK:

AccOut = 1

ALLOCATE 3
PUSH 0
Mem[0] = 1

ADDIMM 10
AccOut = 11

PUSH 1
Mem[1] = 11

ADDIMM 10
AccOut = 21

PUSH 2
Mem[2] = 21

PULL 0
AccOut = 1

PULL 1
AccOut = 11

PULL 2
AccOut = 21

DEALLOCATE 3

PULL 0
AccOut = 55

ADD b
AccOut = 100

ALLOCATE 2
AccOut = 100

PUSHRA 0
Mem[0] = RA
AccOut = 100

PUSH 1
Mem[1] = 100

PULL 0
AccOut = 0x10

DEALLOCATE 2
SP = 0x3fb

JUMPACC
PC = 0x10

Unique Features
Single Instruction Format
Our programming language utilizes a single instruction type U (for Universal). This means that
all instructions have a 6-bit opcode followed by 10-bits of an immediate or an address. It adds to
the simplicity, programmability, and ease of translation to our programming language. Given a
file with machine code, a user can easily interpret the instruction, which helps with debugging
immensely. The 6-bit opcode also allows for easy future modification of our programming
language and the addition of many pseudo-instructions to aid with programmability.

Single Programmer Accessible Register
In order to keep our processor as close to pure accumulator-based design as possible, the
accumulator is the only programmer accessible register. Other registers are implemented in the
data path to accommodate a multicycle process (e.g. IM, ALUOut, and PC registers) but are
not available to the user.

Subroutine Return Values and Arguments Placed on Stack
Due to our desire to keep our processor close to pure accumulator, we place return values and
arguments on the stack during subroutines instead of into special registers. In our calling
conventions, you can see that we store returned values at the stack pointer –1 and –2 and the
return address at the stack pointer. This makes our processor unique from Load Store or less
pure accumulator-based designs.

Extra Features
Assembler
The assembler for NLS is highly efficient, flexible, extensible, and easy to use. It is written in
python and works as a command-line program. Assembly files can contain blank lines and
comments that begin with ‘#’. To run the assembler, the user must run it from the command line
with their assembly file as an argument, like so:

>python assemble.py ./my_assembly_file.asm

The assembler will automatically assemble it and write the binary result to a .mif file in the same
directory as the assemble.py file. The result of the above command would be the file
“my_assembly_file.mif”.

The user can also add the flag “--debug-mode” if they want to see the PC value and instruction
next to each line of machine code output. For example:

>python assemble.py relprime.asm --debug-mode
Assembling "relprime.asm"...

LABELS: {RESULTLOOP: 0x8, RELPRIME: 0xc, WHILE: 0x1a, RELPRIMEDONE: 0x32, GCD: 0x3c,
GCDWHILE: 0x56, ELSE: 0x68, RETURN_A: 0x70}
VARS: {m: 0x200, n: 0x202, a: 0x204, b: 0x206}

 0x0 0100010000000010 | ALLOCATE 2
 0x2 0100110000000001 | PUSH 1
 0x4 0011000000000110 | JUMPL RELPRIME
 0x6 0101001111111111 | PULL -1
 0x8 0001010000000000 | ORIMM 0
 0xa 0010110000000100 | JUMP RESULTLOOP
 0xc 0000110000000000 | ANDIMM 0
 0xe 0001010000000010 | ORIMM 2
 0x10 0011101000000000 | STORE m
 0x12 0101000000000001 | PULL 1
 0x14 0011101000000010 | STORE n
 0x16 0100010000000011 | ALLOCATE 3
 0x18 0101010000000000 | PUSHRA 0
 0x1a 0011011000000010 | LOAD n
 0x1c 0100110000000001 | PUSH 1
 0x1e 0011011000000000 | LOAD m
 0x20 0100110000000010 | PUSH 2
 0x22 0011000000011110 | JUMPL GCD
 . . .

As seen above, the debug flag makes it easy for the user to see how their instructions correlate
to machine code, making it easy for them to work through problems on the machine.

Assembler Pseudo-instructions

As stated above, the assembler is highly extensible. New pseudo-instructions can be added to
the assembler with ease. In the inst.json file, the user can add a new json entry that contains the
new pseudo-instruction’s name and sub-instructions.

For example, this pseudo-instruction ‘LOADIMM’ will set the accumulator to 0 using ANDIMM 0,
then use ORIMM to fill the accumulator with the desired immediate:

 "LOADIMM": {
 "is_pseudo": true,
 "parts": [
 "ANDIMM 0",
 "ORIMM {0}"
]
 },

The {0} is the first argument of the pseudo-instruction, which gets replaced with the real
argument automatically. ‘LOADIMM 5’ means that the ‘ORIMM {0}’ will then become ‘ORIMM 5’.
The user can have as many arguments as they want, and use {1}, {2}, and so on to fill them in
to the sub-instructions.

Assembler Arguments

Required

Argument name Argument type Description

(None) String The path of the input assembly file

Optional

--output-file-path
-o String The path of the output

--debug-mode
-d Flag (on/off) Enable debug mode

--hex-mode Flag (on/off) Output hexadecimal machine code
instead of binary

Conclusion

While working on this processor, our greatest issues arose from the single-register nature of the
accumulator architecture and our planning of our testing stages. To address those, our
processor has special registers such as a stack pointer and register address, we were able to
get thorough tests in the late stages of implementation that helped us track down small bugs.
After debugging our entire Datapath, our processor is able to fully run all of our instructions, and
programs. The biggest part about our processor is the highly efficient assembler as well as our
single instruction format and subroutine calls placed on the stack.

	Introduction
	Description

	Instructions
	Description
	Design
	Implementation
	Testing
	Component Testing
	Implementation Testing
	Datapath Testing

	Unique Features
	Single Instruction Format
	Single Programmer Accessible Register
	Subroutine Return Values and Arguments Placed on Stack

	Extra Features
	Assembler
	Assembler Pseudo-instructions
	Assembler Arguments

	Conclusion
	Appendix
	Design Document
	Design Journals
	Instruction Set
	RTL
	Datapath
	Components

