Winter 2025 OPERATING SYSTEMS

CSSE 332 —-- 0OPERATING SYSTEMS

CPU Scheduling I

Name:

Question 1. (5 points) You are the lead designer of a new CPU process scheduler in the latest
version of the RHIT Linux operating system. Unlike a regular general-purpose operating sys-
tem, you know beforehand that the system you are designing only runs three processes: P,
P,, and P3, and that we only have a single CPU.

To make things simple, we will make the following assumptions about these processes:

1. P, Py, and P5 run for 5 ms each.

2. All three processes are ready to run at boot time.

3. You cannot interrupt a process that is actively running on the CPU.

4. Once a process runs on the CPU, it will never block during its runtime. In other words,

all three processes are CPU-intensive and never sit idle.

Based on the above assumptions, describe a policy by which you determine which process to
run at what time. Make sure to note the time (in ms) when each process starts and when it
ends.

Question 2. (5 points) Given you scheduling policy, for each process, calculate the time difference
between when a process completes its execution, and the time when it arrives to your system
(recall that they all arrive at time 0 for our current system). We refer to this value as the
turnaround time for each process. Finally, calculate the average turnaround time for all three
processes.

Average turnaround time:

Mon Feb 03 2025 Page 1 of 6

Winter 2025 OPERATING SYSTEMS

Process | Arrival time | Completion time (ms) | Turnaround time (ms)

P 0
Py 0
Ps 0

Question 3. (5 points) Assume now that we drop our first assumption, i.e., that all three of the
processes run for 5 ms each. Each process can now run for an arbitrary time. In other words,
our assumptions now are:

1. PrPoandPrrunfor-bmseach:

2. All three processes are ready to run at boot time.

3. You cannot interrupt a process that is actively running on the CPU.

4. Once a process runs on the CPU, it will never block during its runtime. In other words,

all three processes are CPU-intensive and never sit idle.

Describe a scenario where your proposed solution in Question 1 would fail to run all three of
the processes, or would cause significant change to the average turnaround time.

Question 4. (5 points) Under the same assumptions, what would be a way to solve the above

problem? Describe your proposed scheduling policy and then calculate the new average turnaround
time.

Process | Arrival time | Completion time (ms) | Turnaround time (ms)

P 0
P 0
P 0

Average turnaround time:

Mon Feb 03 2025 Page 2 of 6

Winter 2025 OPERATING SYSTEMS

Question 5. (5 points) We will now relax our second assumption, which is that all three processes
are ready to start at boot time (i.e., at time 0). Processes can now arrive at different times
during the lifetime of our system. For your reference, here are our updated assumptions:

1. PrrPoandPrrunfor-bmseach:

2. AHl-three-proeesses-areready-to-run-eat-boot-time:

3. You cannot interrupt a process that is actively running on the CPU.

4. Once a process runs on the CPU, it will never block during its runtime. In other words,

all three processes are CPU-intensive and never sit idle.

Describe a scenario in which the problem you uncovered in Question 3 resurfaces. Again,
calculate the turnaround time for each process and then the average turnaround time for all
three processes. It might help you to think of the worst-case possible for arrival times of the
processes.

Process | Arrival time | Completion time (ms) | Turnaround time (ms)

Py

Py

Ps

Average turnaround time:

Mon Feb 03 2025 Page 3 of 6

Winter 2025 OPERATING SYSTEMS

Question 6. (5 points) Without relaxing our third assumption, there is really not much we can
about the previous problem. Therefore, we will go ahead and relax that assumption and give
the scheduler the ability to perform context switching. We will allow the scheduler to pause
a process and remove it from the CPU to allow another process to start running. Processes
removed from the CPU are stored in a data structure, and it is the job of the scheduler to
implement the scheduling policy and decide which process gets to run when.

For your reference, here are our updated assumptions:

4. Once a process runs on the CPU, it will never block during its runtime. In other words,
all three processes are CPU-intensive and never sit idle.

If our goal is to minimize turnaround time, i.e., finish our processes as fast as possible.
Describe a scheduling policy that would solve the problem revealed in Question 5 and minimize
the turnaround time. As usual, calculate the turnaround time for each process and the average
turnaround time for your processes.

Process | Arrival time | Completion time (ms) | Turnaround time (ms)

Py

Py

Ps

Average turnaround time:

Mon Feb 03 2025 Page 4 of 6

Winter 2025 OPERATING SYSTEMS

Question 7. (5 points) In addition to the turnaround time, we will introduce a new metric, the
response time. The response time is defined as the difference between when a process first runs
(i.e., the first time it goes on the CPU) and its arrival time. The response time is not concerned
with when a process terminates.

For your policy described in the previous question, calculate the response time for each process
as well as the average response time over all three.

Process | Arrival time | Time of first run (ms) | Response time (ms)

Py

Py

Py

Average response time:

Question 8. (5 points) If our goal is to minimize response time (rather than turnaround time),
how would your scheduling policy change? Suggest a new scheduling policy that can achieve
that goal, and calculate the average response time and average turnaround time under the new

policy.

Process | Arrival time Teirstrun (ms) Tcompletion (ms) Tt urnaround (ms) Tresponse (ms)

P

Py

Ps

Average turnaround time:

Average response time:

Mon Feb 03 2025 Page 5 of 6

Winter 2025 OPERATING SYSTEMS

Question 9. (5 points) Now consider what happens when we relax our last assumption, namely
that our processes are all CPU-intensive. What this means is that some of our processes will
make I/O calls, and then enter sleep mode until an input or output becomes ready. We refer
to such processes as I/0-bound processes.

Describe how would that impact your scheduling policy. In other words, when deciding which
process to schedule, would you rather give preference to a process that is CPU intensive or I/O
bound?

Question 10. (5 points) Finally (last question I promise), we will relax our most important, yet
implicit, assumption, that we know beforehand the behavior of our processes (i.e., their total
runtime, whether they are CPU-intensive or I/O-bound). Therefore, we cannot know much
about process until we start running it and observing its behavior.

What would your scheduler need to do to adapt to such processes? Would time-slicing alone
be enough to fully and optimally utilize the processor?

Mon Feb 03 2025 Page 6 of 6

