
Winter 2025 Solution Key Operating Systems

CSSE 332 -- Operating Systems

Paging

Name: Solution Key

Question 1. (5 points) What is the main feature of paging that allows us to avoid external frag-
mentation?

Solution: If paging is employed, the entire memory (both physical and virtual) is divided
into equal sized chunks, called pages. We no longer need to make any contiguity assump-
tions about any memory area in the process’s address space. In fact, the space’s segments
(code, globals, heap, stack) are no longer relevant in the physical space.

Question 2. (5 points) In a paged memory architecture, memory is divided into equal sized
chunks. In virtual space, those chunks are called pages , while in physical space,
they are called frames . To make address translation possible, each process needs to
maintain a page table , which is an array of page table entries (PTEs).

Question 3. The following questions assume a 16-bit architecture, which means that all of our
addresses are 16 bits wide.

(a) (5 points) If we would like to design our paging system to have 1KB pages. How many
bits should we reserve from the 16-bits address for the page offset?

Solution: 1KB page means we need 10 bits to offset into it.

(b) (5 points) In that case, how many pages can each process have?

Solution: We are left with 6 bits from the address for the page number, which means
each process have 26 = 64 pages.

(c) (5 points) In this bit-box below, show how the page number and the page offset are
represented.

Tue Jan 07 2025 Page 1 of 3



Winter 2025 Solution Key Operating Systems

0123456789101112131415

Page Number Page Offset

(d) (5 points) Write down the formula used to translate a virtual address (VA) into a physical
address (PA).

Solution:

PA = PageTable

VA [15 : 10]︸ ︷︷ ︸
Page Number

+ VA [9 : 0]︸ ︷︷ ︸
Page Offset

(e) (5 points) Assume that each PTE is 16 bits, what is the size of a page table (in bytes)?

Solution: Each process has a 6-bits page number, which means each page table must
have 26 = 64 page table entries (PTEs). If each PTE is 16 bits wide, in total, the page
table must be 26 × 26 = 212 = 4096 bytes in size, or 4KB.

Question 4. (5 points) Assume now that we are working with a 32-bits RISC-V architecture.
Describe the content of a page table entry (PTE) in the bit box below.

012345678910111213141516171819202122232425262728293031

N/A Physical Frame Number Permission bits

Question 5. (5 points) Describe the meaning of the permission bits in RISC-V below.

1. PTE V: Indicate if the PTE is valid or not.

2. PTE W: Indicate if the PTE is writable or not.

3. PTE R: Indicate if the PTE is readable or not.

4. PTE X: Indicate if the PTE is executable or not.

5. PTE U: Indicate if the PTE is accessible by the user or not.

Question 6. Answer the following question about the xv6 operating system.

(a) (5 points) Given a process represented by a struct proc pointer p. You can use p->pagetable

to access p’s page table in the kernel.

(b) (5 points) When in kernel space executing on behalf of a user process (e.g., on a system
call), you can use the myproc() function to access the current running user process.

(c) (5 points) The function walkaddr can be used to fetch a physical frame number
given a virtual address. The lower 12 bits of the returned physical frame
number will always be zeros .

Tue Jan 07 2025 Page 2 of 3



Winter 2025 Solution Key Operating Systems

Question 7. (5 points) Describe some of the shortcomings of the discussed paging approach.

Solution:

• Each memory access now requires two memory accesses, one to go to the page table
and another to go to fetch the data.

• Page tables can grow quite large. We need one for every process, which means we
will lose a lot of our main memory for paging overhead.

• There’s one more, think about it for possible engagement points.

Tue Jan 07 2025 Page 3 of 3


