
Winter 2025 CSSE 332 Operating Systems

CSSE 332 -- Operating Systems

Rose-Hulman Institute of Technology

Pipes

Name: Solution Key

Question Points Score

Question 1 5

Question 2 20

Question 3 5

Question 4 5

Question 5 10

Total: 45



Winter 2025 Name: Solution Key Operating Systems

Question 1. (5 points) In Unix, “unnamed” pipes are bidirectional means of communication
that are managed by the kernel.

A. True.

B. False. Please remember that pipes are unidirectional.

Question 2. Consider the processes with the lineage relationship shown in Figure 1 below.

P1

P2 P3

P4 P5

Figure 1: Lineage relationship for processes in Question 2

(a) Assume that before forking P4 and P5, P3 creates a Unix pipe (let’s call it σ) using the
pipe system call.

i. (5 points) P4 and P5 can communicate with each using σ.
A. True.

B. False.

ii. (5 points) P4 cannot use σ to communicate with P3.
A. True.

B. False.

iii. (5 points) P4 can use σ to communicate with P1.
A. True.

B. False.

(b) (5 points) Assume now that P2 creates a pipe using the system call pipe, which of the
below processes can P2 communicate with using that pipe?

A. P1 B. P3 C. P4 D. P5 E. None of the above.

Question 3. (5 points) A process that needs to read from a pipe must close the writing end
of that pipe. It can then use the read system call to extract bytes from the pipe.

Question 4. (5 points) Briefly describe the events that happen when a process attempts to read
from a pipe that has no more writers, but whose writing ends are still open.

Solution: The process will hang forever since it assumes that more data might show up
sometime in the future. It is essential to close writing ends when done to indicate to the
reading processes that no further data will be added.

Tue Dec 10 2024 Page 1 of 2



Winter 2025 Name: Solution Key Operating Systems

Question 5. Consider the following code snippet.

1 if(pipe(fd) < 0) {

2 perror("PANIC");

3 exit(EXIT_FAILURE);

4 }

5 int rc = fork();

6 if(rc == 0) {

7 // sleep for some 20 seconds , give parent time to write.

8 char buff [5];

9 int len;

10 while ((len=read(fd[0], buff , 4))) {

11 buff[len] = 0;

12 printf("Read %s\n", buff);

13 }

14 close(fd[0]);

15 }

16 // close reading end

17 close(fd[0]);

18 write(fd[1], "hello world!", strlen("hello world!"));

19 write(fd[1], "nice try!", strlen("nice try!"));

20
21 // done

22 close(fd[1]);

23 // do other stuff and wait for child.

(a) (5 points) The code above contains a bug. Find it and suggest a way to fix it.

Solution: The child process does not close the writing end of the pipe before starting
to read. Add close(fd[1]); before the read operations.

(b) (5 points) Assume now that the bug has been fixed and that all of the parent’s write
operations finish before the child process reaches the while loop. What would be the
output on the console when the child reads from the pipe?

Solution: The child process will read the messages from the parent 4 bytes at a time,
which means we will print them out as follows:

hell

o wo

rld!

nice

try

!

Tue Dec 10 2024 Page 2 of 2


