
Winter 2025 CSSE 332 Operating Systems

CSSE 332 -- Operating Systems

Rose-Hulman Institute of Technology

Processes II

Name: Solution Key

Question Points Score

Question 1 5

Question 2 5

Question 3 10

Question 4 5

Question 5 200

Question 6 2000

Question 7 20000

Question 8 5

Question 9 5

Question 10 5

Total: 22240



Winter 2025 Name: Solution Key Operating Systems

Question 1. (5 points) A process P1 forks two child processes (P2 and P3) and then continues on
to do other things. After some time, P2 completes, a couple of seconds after, P3 completes.
At that point, P1 calls wait(0);, which child process would be the one captured by the wait

system call?

A. P2

B. P3

C. Cannot tell, it can be either of those child processes.

Question 2. (5 points) The wait system call can be used to wait for any
child process while the waitpid system call can be used to wait for a specific
child process.

Question 3. Consider the snippet of code below.

1 int status;

2 int rc = fork();

3 if(rc == 0) {

4 // some child code goes here ...

5
6 // done , leave

7 if(success) {

8 exit (0);

9 } else {

10 exit (5);

11 }

12 }

13
14 // parent code here.

15 // let's check on the child.

16 wait(& status);

17 if(status == 0) {

18 printf("My child completed successfully !\n");

19 } else {

20 printf("My child was not successful !\n");

21 }

(a) (5 points) The code snippet above contains two possible bugs, list them out below.

Solution:

• We are using status directly instead of WEXITSTATUS(status).

• We are not checking if the process actually exited. We must use WIFEXITED.

(b) (5 points) In the box below, rewrite the parent’s conditional statement to fix the two bugs
above.

Solution:

1 if(WIFEXITED(status)) {

2 if(WEXITSTATUS(status) == 0) {

3 printf("My child completed successfully !\n");

4 } else {

Fri Dec 06 2024 Page 1 of 3



Winter 2025 Name: Solution Key Operating Systems

5 printf("My child was not successful !\n");

6 }

7 } else {

8 printf("My child crashed !!\n");

9 }

Question 4. (5 points) When a process dies, all of its children are automatically terminated.

A. True.

B. False. Orphaned children are adopted by the operating system, they be-
come direct children of init.

Question 5. (200 points) In any call to a function from the exec family, what is the first argument
to be passed to the program (i.e., second argument to exec)?

Solution: The name of the program, that constitutes argv[0] for the program.

Question 6. (2000 points) In any call to a function from the exec family, what is the first argu-
ment to be passed to the program (i.e., second argument to exec)?

Solution: The name of the program, that constitutes argv[0] for the program.

Question 7. (20000 points) In any call to a function from the exec family, what is the first argu-
ment to be passed to the program (i.e., second argument to exec)?

Solution: The name of the program, that constitutes argv[0] for the program.

Question 8. (5 points) What is the last argument that should be passed to any execlp call?

Solution: It should always be NULL or 0.

Question 9. (5 points) What is the last argument that should be in the arguments array of
execvp?

Solution: It should always be NULL or 0.

Fri Dec 06 2024 Page 2 of 3



Winter 2025 Name: Solution Key Operating Systems

Question 10. (5 points) Below is sample snippet of code written by a csse332 student.

1 int rc = fork();

2 if(rc == 0) {

3 // child process

4 execlp("./ buffalosay.bin", "./ buffalosay.bin", arg_1 , NULL);

5 printf("Done with buffaloysay.bin , let's do other stuff!\n");

6
7 // do something very important.

8
9 // done , now can leave.

10 exit(EXIT_SUCCESS);

11 }

The code snippet contains a significant bug. Identify the bug and suggest a way to fix it.

Solution: The bug is the fact that we are doing things after a call to execlp. If exec is
successful, then the code after it is gone. If it failed, then we should just handle the error
and exit.

Here’s a possible way to fix it by involving the parent process.

1 int rc = fork();

2 if(rc == 0) {

3 // child process

4 execlp("./ buffalosay.bin", "./ buffalosay.bin", arg_1 , NULL);

5 perror("execlp has failed!");

6 exit(EXIT_FAILURE);

7 }

8 wait (0);

9 printf("Done with buffaloysay.bin , let's do other stuff!\n");

10
11 // do something very important.

12
13 // done , now can leave.

14 exit(EXIT_SUCCESS);

Fri Dec 06 2024 Page 3 of 3


