
Winter 2025 CSSE 332 Operating Systems

CSSE 332 -- Operating Systems

Rose-Hulman Institute of Technology

Introduction to Processes

Name:

Question Points Score

Question 1 5

Question 2 5

Question 3 5

Question 4 5

Question 5 5

Question 6 10

Question 7 5

Question 8 5

Question 9 10

Total: 55



Winter 2025 Name: Solution Key Operating Systems

Question 1. (5 points) The figure below represents the address space of a process P. Label each
part of the process address space with its corresponding section content (i.e., stack, heap, etc.).

High Address

Stack
y

Heap
x

Globals

Code/Text

Low Address

Question 2. (5 points) When switching from one process to another to run on the CPU, what
needs to be saved about the process so it can later on resumed?

Solution: We would need to save the program counter (pc register) as well as all of the
process’s registers. See the struct trapframe in kernel/proc.h for reference.

Question 3. (5 points) Describe how processes are related to each other in a Unix-like operating
system.

Solution: There is one mother process (typically called init or depending on the system,
systemd) that is initially created. All processes in the system are children (direct or indirect)
of this process. It is like a big tree rooted at this init process.

Question 4. (5 points) How does a process keep track of who its direct parent is?

Solution: We maintain all of the information about a process in the process control block
(pcb). In xv6, it is called the struct proc and is defined in kernel/proc.h. This is where
we also store the process’s trapframe, it is maintained in the kernel’s memory space.

Thu Dec 05 2024 Page 1 of 3



Winter 2025 Name: Solution Key Operating Systems

Question 5. (5 points) In RISC-V, the ebreak instruction is used to cause a context
switch to the kernel to execute priviledged operations.

In the standard C library, the fork system call is used to create a new process by
duplicating the calling process. The new process is called a child of the calling

process. Finally, a process can use the getpid system call to obtain its process id.

Question 6. (a) (5 points) Where can you find the documentation for the fork system call?
What is the command you can use to bring it up?

Solution: The manual pages, using man fork.

(b) (5 points) From the documentation page, which header file should you include to use fork?

Solution: unistd.h

Question 7. (5 points) Consider the code snippet below.

1 pid_t pid = fork();

2 if(pid == 0) {

3 printf("Hello from the child process %d\n", getpid ());

4 exit (0);

5 } else {

6 printf("Hello from the parent process %d\n", getpid ());

7 exit (0);

8 }

Which of the print statements will show up on the console first?

Solution: We cannot know since we do not control which process runs at which time, even
if we use fork.

Question 8. (5 points) Consider the code snippet below.

1 pid_t my_pid = getpid ();

2 if(fork() == 0) {

3 printf("My pid is %d\n", my_pid);

4 exit (0);

5 } else {

6 printf("My pid is %d\n", my_pid);

7 exit (0);

8 }

Which of the following statements is True?

A. Each process will print its own process id.

B. Both processes will print the same value, which is the process id of the
parent.

C. Both processes will print the same value, which is the process id of the child.

D. We cannot know what values will be printed in each case.

E. None of the above.

Thu Dec 05 2024 Page 2 of 3



Winter 2025 Name: Solution Key Operating Systems

Question 9. (10 points) Consider the following snippet of code.

for(int i = 0; i < 3; i++)

fork();

How many process will we end when this loop runs? Draw the corresponding tree of these
processes.

Solution: We would end up with 23 processes since each new process will continue with
the loop.

Thu Dec 05 2024 Page 3 of 3


