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We will start with the vector potential A , evaluated at the retarded time (p. 372, Good):

   A(r,t)  =( (o/4( )  ( J (r',t')/(r – r' ( dv' ,  (dv' = volume)





(0)

and t' = 'retarded time' = t-(r – r' (/c,   We will confine ourselves to current density J only in the z-direction, and always oscillating sinusoidally. Thus, the vector potential  A  will always have only a z-component.


J(r',t') = z^ J(z')e-i((t-(r – r’ (/c)
When r>>r',  (r – r( (/c  is approximately equal to  (r - z' cos ()/c, and the propagation vector k (k= (/c), is in the direction of r.  In the denominator of A, we will keep only the leading term, r.  Keeping higher powers of r in the denominator results in non-radiating fields which fall off faster than 1/r. For r>>r' we find that

J(r',t')= z^ J(z')e-i(( t-(r-z’ cos( (/c) = z^ J(z')e-i( t e-ik(r-z’ cos( ) = (r^ cos ( - (^ sin () J(z')e-i( t eik(r-z’cos( )
To get the magnetic field B we take the curl of A. 

Curl A = r^/(r sin () [((A( sin ()/(( - ((A()/((] +(^/r (1/(sin ()((Ar)/((  -((rA()/(r)  + (^/r ( ((rA()/(r - ((Ar)/(()   

J has r and ( components, and the curl acts on these, but the curl of J results in terms which fall off faster than 1/r, so the overall effect is as if the curl only acted on e(ikr)/r and not on the rest of J. In the radiation zone, (r becomes larger and larger) the key curl component is (^/r ( ((rA()/(r, so that 

       curl [z^ exp(ikr)/r] = ik x z^ exp(ikr)/r,     ( Note that (^ = k^ x z^, and that k^ = r^)
due to ik being much larger than -1/r.  

In the radiation zone, where r>> (, and r>>(antenna length), the magnetic field is, for a dipole oscillating along the z-axis 


Brad = ik x z^ exp(ikr)/r  ((o/4() ( dz' J(z')e-i( t eik(r-z’cos( )



(0a)

The time-averaged poynting vector <S> is 1/2 Re(ExH*), H = B/(o, and in the radiation zone  

E = c B x k^ .   [ Note that (oc = 377 ( . ] Thus,


<S> = r^ c/(2(o) B(B*  = r^  c/(2(o) (curl A(2.





(1)

The angle between z^ and k^ is (, so   (curl A(  = | ((o k sin ( /(4(r)) ( J(z') e-ikz' cos ( dv' | , and


<S> = r^  c/(2(o) (((o k sin ( /(4(r))  ( J(z') e-ikz' cos ( dv' (2.




(2)

Units: (oc : ohms, (k/r)2 :m-4,  (J dv)2 : amp2m2. Overall dimensions:  amp2ohms/m2 = watts/m2
Dipole radiation.

For dipoles, kz'<<1 because the dipole length is much, much smaller than a wavelength. For dipoles, we wish to show that 


( J dv' = dp/dt, where  p = po e -i(t   = dipole moment. 




(3)

One way is to imagine a sinusoidally oscillating dipole with a charge +qo having displacement 

D/2 exp(-i(t), and a charge –qo with a displacement –D/2 exp(-i(t).  J = (v, and (dv’ =dq, so 

( J dv’ = q+v+ +q-v- . The negative charge has a negative velocity so we have

( J dv’ = qo d/dt(D exp(-i(t)) = -i( qoD exp(-iwt) = dp/dt, where p = qoD exp(-i(t) .

Another way to show (3) is to have two tiny spheres separated by D one with a charge qo exp(-i(t) and the other with a charge –qoexp(-i(t). The current in a thin wire connecting them would have to be dq/dt = -i( qo, and ( J dv’ = ( I dz’ = -i( qo exp(-i(t) –D/2( D/2dz’  = -i(qoD exp(-i(t). 

Then              

( J(z')dv'  =  dp/dt   =-i( p   = - i(  po. = -ik c po .





(3')

Using (0a) and (3') we may write for Brad

Brad = ik^ x po k exp(ikr)/r  ((o/4() (-ik c).






(3a)

Notice that we have the dipole moment as a vector po in the formula for B, saying that B is perpendicular to r^ and po.  Then we clean up a little and have


Brad = -(k^ x po) k2 exp(ikr)/r  (c(o/4() .






(3b)

Then from (1) and (3a) we get


 <S> = r^ (c(o /2) (k2 c po sin (/(4(r))2 .    






(4)

Another way of writing this is

 
 <S> = r^ (c(o /2) (k^x po)((k^x po*)(k2 c /(4(r))2 .    




(4a)                   

Dipole radiation characterizes Rayleigh scattering of light in the sky, and goes like the inverse fourth power of the wavelength (k4).

To re-write (4a) in terms of the acceleration a, we would use po = qx = qs exp(-i(t). Then, noting that

( = kc, and

 po(( = qx(( = -(2 po =-(2 q a

we can re-cast (4a) as

<S> = r^ ((o/2c) (k^x a)((k^x a*) /(4(r)2 = r^ (k^x a)((k^x a*) (o/(8(r2c3) /(4((o)  

(4b)   

Total Radiated Power by a Dipole. We must integrate <S>  ( r^ dA over  a sphere of radius r to obtain the total radiated power. The element of area on a sphere in spherical coordinates is dA = r2 sin ( d( d( , or dA = r2 d(. (d( is an element of solid angle). With no ( dependence, this becomes 2 ( r2 sin ( d(, and 

<Ptotal> = (c(o /2) k4 c2 po2  2( 0(( d( sin ( (1-cos2 (). 




(5)

Letting x = cos (. the integral is that of  -1(1dx(1-x2) = 4/3. Thus the integral of sin2 ( d( is 8(/3, and

<Ptotal> = (c(o /(12()) k4 c2 po2 . 







(6)  

The formula for the dipole is qoD exp(-i(t), so we could think of a single charge qo oscillating with amplitude D instead of opposite charges oscillating out of phase with amplitude D/2 each. Then we can think about the acceleration of the dipole, which would be  a = –(2 D.  Since k=(c, we could write 

k2 =(2/c2, or k2 = (a/D) /c2 .  This permits us to compare our result to the famous Larmor formula for instantaneous radiated power (p. 365, Good) from an accelerating charge qo

P = (2/3)(a2/c3) ke qo2  ,








(7)

where ke = 1/(4((o).  Substituting  po = qoD in (6) we find

<Ptotal> = (c(o /(12()) [(a/D)2 /c4 ] c2  [qo2D2] = (o a2 qo2 /(12(c) .



(8)

It is left as an exercise to connect (7) and (8).

Thomson Scattering Cross-section. (p. 367, Good)

If we have an incident plane wave electric field Eo acting on an electron of charge q and mass m we get an acceleration a = qEo/m. Putting this in (8) gives


<Ptotal> = (o (qEo/m )2 qo2  /(12(c) .

The incident time-average poynting vector is <Sinc> = ½ (o c |Eo|2 . The ratio <Ptotal> / <Sinc> has the dimensions of area, and is referred to as the scattering cross-section of the charge q:


(thomson = 8(/3 re2,

where re = q2/(4((o mc2) and is known as the classical electron radius, around 10-15 m.  This is the scattering cross-section for linearly polarized light.

What about the scattering cross-section with circularly polarized light coming in?  Now there are two perpendicular components of E, 90o out of phase: E = (x^ +iy^) Eo exp(-i(t+ikz). The acceleration will be a = qE/m, as before, but now there are two acceleration components in the x-y plane, 90o out of phase. With linearly polarized light, we had Eo(Eo*, but now we will have


(x^ +iy^) Eo exp(-i(t+ikz)((x^ -iy^) Eo exp(+i(t-ikz) =2Eo2.

This means the incident poynting vector is twice that of linearly polarized light:  <Sinc> = (o c |Eo|2.

To get the radiated power, we must integrate the radiated intensity over solid angle


P = ( <S>( r^ d(
<S> = r^ (k^x a)((k^x a*) /(8(r2c3) /(4((o) 






(8a)

and a = qE/m = qEo/m (x^+i y^ ). We can rearrange (k^x a)((k^x a*) into


(k^x a)((k^x a*) = k^ ( (a x (k^ x a*) = k^(( k^(a(a*) - a* (k^(a) = |a|2 -(k^(a)(k^(a*).
a(a* = (qEo/m)2 (x^+i y^ )((x^-i y^ ) = 2(qEo/m)2 . We show on p. 6 that k^ = x^ sin ( cos ( + y^ sin ( sin ( + z^ cos (. From this we find


k^(a = qEo/m (x^ sin ( cos ( + y^ sin ( sin ( + z^ cos ()(( x^+i y^), or


k^(a = qEo/m (sin ( cos ( + i sin ( sin (), and k^(a* = qEo/m (sin ( cos (  -i sin ( sin ().

Now (8a) becomes


<S> = r^ (qEo/m)2 [2 -  sin2( (cos2 ( + sin2 () ] 1/(8(r2c3) /(4((o) 



(8b)

When this is simplified we have


<P> = (qEo/m)2 /[1/(8(c3) /(4((o]  ( 2( sin ( d( (1+cos2 (), or


<P> = 16(/3 (qEo/m)2 /[1/(8(c3) /(4((o)]

Then (
 = <P>/<Sinc> = {4(/3 (qEo/m)2 /[1/(8(c3) /(4((o)]} /  {(o c Eo2} = 16(/3  re2 . This says the cross-section for circularly polarized light is the same as for linearly polarized light, since <P> is doubled and so is <Sinc>.

Scattering from unpolarized light.  Suppose we bring a beam of linearly polarized light in along the z-axis, its E field lying  in the x-y plane making an angle ( to the x-axis: E = Eo (x^cos ( +y^ sin () .

Then we ask for the radiated power in the (, ( direction. When we do the k^(a calculation above we get

(after a little simplifying) (k^(a) = (qEo/m) sin ( cos((-(). Now (8b) becomes


<S> = r^ (qEo/m)2 [1 -  sin2( cos2 ((-()] 1/(8(r2c3) /(4((o) 




(8c)

The reason we did the business about ( is so we could average over ( to get the effect of scattering from unpolarized light. When we average over ( { <sin2 (> = 1/2, < sin ( cos (> = 0, etc.) we find


<S> = r^ (qEo/m)2 [1 -  1/2 sin2( ] 1/(8(r2c3) /(4((o) 




(8d)

When we compute the scattering cross-section from (8d) we still get 8(/3 re2, as before.

Antenna calculations. In each case we supply the current density J(z') and carry out the integral in (1) to determine the time-averaged poynting vector in the radiation zone.

Short (Stub) Dipole antenna of length L.  Here again we will take kz' << 1 (the dipole length is short compared to a wavelength). The integral goes through as before with dipoles, noting that the feed current to two spheres separated by L (as before) is I(z') = -i( qo e-i(t . As before the integral is

i(qoL = iIo L = i( po.  We will substitute for po in (1) and find the total power: 


<Ptotal> = (8(/3)(c (o /2)(k2 Io2 L2 )/(4()2 = ((/3)c((L/()2  Io2 .

The time-averaged square of the current is Io2/2. The radiated power may be interpreted as 'radiation resistance' Rrad times the time average of the squared current. Then we find that

Rrad =  (L/()2 (2(/3) c(o,  where c(o ( 120(  ohms = 'free space impedance'.

Rrad ( 80 (2 (L/()2  ohms = 789 ohms (L/()2 .   If L/( = 0.01,  Rrad  would be only around 0.08 ohms, suggesting only a very small percentage of the input power is being radiated (very poor antenna efficiency).

Half-wave and full-wave antenna. This antenna has two halves, each of which has length d/2. The current density must vanish at z'=d/2. It is given by  I(z') = Io sin(kd/2-k(z'() . This is integrated from -d/2 to d/2, in [1] to give <S>.  Then for the total radiated power, one integrates          

Ptotal = integral over solid angle  = <S> ( k^ (r2 d().    The integral over z' is 

(  Io sin(kd/2-k(z'()) e-ikz' cos ( dz'  = 2Io [cos(1/2 kd cos() - cos(kd/2)] /(k sin2 ().

For HW, you are to show that (  Io sin(kd/2-k(z'()) e-ikz' cos ( dz'  = 2Io [cos(1/2 kd cos() - cos(kd/2)] /(k sin2 ().

Method 1: Look for symmetries in the integral before trying to do it or feed it to Maple. 

Method 2: It can be broken in two parts, 1) 0->d/2 and 2) -d/2->0. For the 2nd part, change the variable to u = -z. Then the two integrals will both run from 0 to d/2 and you can combine them into something decent you can feed to Maple. The magnitude of curl A then becomes

[((o k sin ( /(4(r))] 2Io [cos(kd/2 cos() - cos(kd/2)] /(k sin2 ()].

The radiation pattern will be symmetric in (, since the antenna is directed along the z-axis. The solid angle element in general is d( = sin ( d( d(, but with ( symmetry this becomes d( = 2( sin ( d(.

Often it is convenient to use x = cos (, then the solid angle integration becomes

Ptotal = (c/2() 2(  (2  Io ( /(4())2 -1 ( 1 [ dx (cos(hx)-cos(h))2 /(1-x2 )], or 

Ptotal = Io2/2  c( /(2()   -1 ( 1 [ dx (cos(hx)-cos(h))2 /(1-x2 )] ,

where h=kd/2. When h=(/2, we have a half-wave antenna. This integration is easily done in Maple, with the following results for half-wave and full-wave antennas:  (p. 381, Good)

Ptotal= Io2/2 Rrad = Io2/2 (c(/2()(1.22)  = 73.1 ohms Io2/2    (kd/2=(/2;   d=(/2,   2d=()

Ptotal = Io2/2 (c(/2()(3.32) = 201 ohms Io2/2  (kd/2 = (;   d=(,   2d = 2()

The radiation resistance of full-wave antenna is almost 3 times that of half-wave antenna, so for the same peak current Io the center-fed full-wave antenna radiates almost 3 times as much power.

Antenna Arrays.  For N identical antennas in a line with center-to-center distance L, each will produce a part of the vector potential in the radiation zone. Each A vector will be shifted in phase from the others 

by an amount


( = k ( L  = kL cos (,  








(9) 


where ( is the angle between k and L. 

We can understand this by recognizing that 




r1
light leaving the sources for the radiation zone


       1

is effectively parallel from each source, as

shown in the sketch at the right




     L

    r2

The factor in outgoing waves from source 1



        2             (r = k^(L

is exp(ikr1) and from source 2 it is exp(ikr2)

When we are far from the sources, the outgoing waves

are effectively plane waves exp(i k(r). Since  r2 = r1+L, then


exp(i k(r2) = exp(i k((r1+L)) = exp(i k(r1) exp(i k(L)

The overall A vector will be   Atotal = A(r,t) + A(r,t) e i(    + A(r,t) e i2(    + ...  [N terms]. 

The resultant A vector is obtained as the sum over i from 0 to N-1 of  exp(i().  This is the sum 

SN = 1 + x + x2 + .. +x N-1, where x = exp(i().  

Multiplying SN by x and then subtracting from SN gives

SN = (xN - 1)/(x-1) = exp(i(N-1)(/2) sin(N(/2)/sin((/2).   Atotal = SN A;  and

(9a)


|Atotal|2  = |SNA|2   = [sin (N(/2)/sin((/2)]2 |A|2   . 





(10) 

For antenna arrays, before we apply equation [0] on page 1, we get Atotal = SN A(r,t). SN doesn't depend on r (it contains only (), so the curl doesn't affect it. When we do the curl of A total, SN tags along, and when the magnitude squared of A is taken, we have the magnitude squared of SN multiplying equation (1).  The factor in (10)  is the same as between N slits in the waves course.

To investigate the k(L factor further, suppose we have two identical antennas whose axes lie in the z-direction, separated by a distance L in the x-direction.  L = x^L, and k^ = r^, a radially outgoing unit vector in spherical polar coordinates.
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(
r^ = x^ sin ( cos ( + y^ sin ( sin ( + z^ cos (
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For k(L we now have  kL sin ( cos ( , with the two sources separated along the x-axis by a distance L.

Then for two sources, we have 


A = A + A exp(i() = A exp(i(/2)  (exp(-i(/2) + exp(i(/2) = 2A exp(i(/2) cos((/2).

We could also have gotten this from (9a) with N=2 :


S2 = exp(i(/2) [sin (2(/2)/sin((/2)] = exp(i(/2) 2 sin((/2) cos((/2) / sin((/2)=  exp(i(/2)  2 cos((/2) .

A line of N identical antennas spaced L apart, each of which has a poynting vector  


<S1> = r^  c/(2(o) (((o k sin ( /(4(r))  ( J(z') e-ikz' cos ( dv' (2.



(2)

will have an overall poynting vector


<Sarray> = r^  c/(2(o) [sin (N(/2)/sin((/2)]2  (((o k sin ( /(4(r))  ( J(z') e-ikz' cos ( dv' (2 ,  (11)

where ( = k(L.



