Calculation of the orbit equation for the two-body problem
- start from energy E =1/2 m/( r-dot^2
+ (r theta-dot)^2) - k/r
- use l= m r ^2 theta-dot and get E = 1/2 m/( r-dot^2 +
l^2/m^2r^2) - k/r
- rearrange to get r-dot = sqrt( 2E/m +2 k/(mr) -(1/r^2)(l/m)^2))
- rearrange to get dr/sqrt( 2E/m +2 k/(mr) -(1/r^2)(l/m)^2))
= dt
- write dt/dtheta dtheta = dtheta/theta-dot
- then cross-multiply by theta-dot and get
- dr theta-dot/sqrt( 2E/m +2 k/(mr) -(1/r^2)(l/m)^2)) =
dtheta
- since theta-dot - l/mr^2 we have
- (dr/r^2( (l/m)/sqrt( 2E/m +2 k/(mr) -(1/r^2)(l/m)^2))
= dtheta
- let u = 1/r, so -du = dr/r^2 . Then we get
- -du(l/m)/sqrt( 2E/m +2 ku/(m) -u^2(l/m)^2)) = dtheta
- multiply on the left by m/l top and bottom and get
- -du/sqrt(2mE/l^2 +2mku/l^2 - u^2) = dtheta
- we complete the square in the denominator and get
- -du/sqrt(2mE/l^2 - (u-2mk/l^2 +(mk/l^2)^2) + (mk/l^2)^2)
= dtheta.
- this is -du/sqrt(2mE/l^2+(mk/l^2)^2)-(u-mk/l^2)^2) =
dtheta
- if we call a^2=2mE/l^2+(mk/l^2)^2) and b = u-mk/l^2 and
p = l^2/(mk)
- we can rewrite as -du/sqrt(a^2-(u-1/p)^2) = dtheta
- a^2 = 2mE/l^2 + (1/p)^2.
- When we let u-1/p = a cos phi we get sqrt(a^2-(u-1/p)^2)
= a sin phi
- since du = -a sin phi dphi the integral on the left reduces
to
- du/sqrt(a^2-(u-1/p)^2) = dphi = dtheta
- This means phi=theta and 1/r-1/p = sqrt(2mE/l^2 + 1/p^2)
cos theta
- multiplying by p on both sides gives p/r-1 = sqrt(p^2
2mE/l^2+1), or
- p/r = 1+ sqrt(1+2El^2/(mk^2) cos theta = 1 + e cos theta
- e = eccentricity = sqrt(1+2El^2/(mk^2)
- l = angular momentum, E = total energy, -k/r = U, p =
l^2/(mk) = length