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Abstract. We show that any weak solution of the dispersion management equation de-
scribing dispersion managed solitons together with its Fourier transform decay exponentially.
This strong regularity result extends a recent result of Erdoğan, Hundertmark, and Lee in
two directions, to arbitrary non-negative average dispersion and, more importantly, to rather
general dispersion profiles, which cover most, if not all, physically relevant cases.

1. Introduction

We prove strong regularity properties of dispersion management solitons, which are station-
ary solutions of the dispersion management, or often also called Gabitov-Turitsyn, equation

i∂tu = −dav∂2xu−Q(u, u, u), (1.1)

where the non-linear term is a cubic nonlinearity which is also highly non-local, given by

Q(f1, f2, f3) :=
1

L

∫ L

0

T−1
D(s)

[
(TD(s)f1)(TD(s)f2)(TD(s)f3)

]
ds. (1.2)

Here Tr := eir∂
2
x is the solution operator of the free Schrödinger equation and D(s) :=∫ s

0
d0(α) dα. The dispersion profile d0 is an integrable periodic function with period L and

mean zero. Physically, it is the mean zero part of the local dispersion in dispersion managed
glass–fiber cables. Equation (1.1) describes the (average) profile of signals in dispersion man-
aged glass fiber cables in a frame moving with the group velocity of the pulse. Thus station-
ary solutions of (1.1), specifically solutions of (1.7) and (1.8) below, lead to (quasi-)periodic
breather type solitary pulses in these fiber cables, which are important in the development of
ultra–fast long–haul optical data transmission fibers. For the convenience of the reader, we
first discuss the reason for the importance of equation (1.1) and its properties for non-linear
fiber optics before stating our main results.
Optical pulses in glass finer cables are very well described by the non-linear Schrödinger

equation
i∂tu = −d∂2xu− |u|2u, (1.3)

where the d is the (local) dispersion of the glass fiber. One might argue that light pulses in
glass–fiber cables are, of course, described by Maxwell’s equations. However, in the slowly
varying envelope approximation in non-linear optics (1.3) indeed describes the evolution of
the envelope of a pulse in a frame moving with the group velocity of the signal through a
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glass fiber cable, see [23, 26, 29]. As a warning : with our choice of notation the variable t
denotes the position along the glass fiber cable and x the (retarded) time.
The possibility to periodically manage the dispersion by putting alternating sections with

positive and negative dispersion together in an optical glass-fiber cable to compensate for
dispersion of the signal was predicted by Lin, Kogelnik, and Cohen already in 1980, see [19],
and then implemented by Chraplyvy and Tkach for which they received the Marconi prize in
2009, see [22]. In this case the local dispersion d(t), recall that t is the distance along the cable,
is periodically varying along the cable and the non-linear Schrödinger equation (1.3) changes
periodically from focussing to defocussing, depending on the sign of the local dispersion d(t).
This periodically varying dispersion creates a new optical fiber type, e.g., through a judicious
choice of parameters both the so called Gordon Haus effect and the four wave mixing can
be suppressed, enabling the development of long–haul optical fiber transmission systems with
record breaking capacities beyond one Terabit/second per fiber which equates to a more than
100-fold capacity increase in the last ten years. Thus dispersion management technology has
been of fundamental importance for ultra-high speed data transfer through glass fiber cables
over intercontinental distances and is now widely used commercially, [1, 2, 3, 7, 8, 13, 16, 17,
19, 21, 24, 25]. For a review of the physics of dispersion management see [31, 32].
The periodic modulation of the dispersion can be described by the ansatz

d(t) = ε−1d0(t/ε) + dav. (1.4)

Here dav ≥ 0 is the average component and d0 its mean zero part which we assume to have
period L. For small ε the equation (1.4) describes a fast strongly varying dispersion, which
corresponds to the regime of strong dispersion management.
Let D(t) =

∫ t

0
d0(s) ds and note that as long as d0 is locally integrable and has period

L with mean zero, D is also periodic with period L. Furthermore, Tr = eir∂
2
x is a unitary

operator and thus the unitary family t 7→ TD(t/ε) is periodic with period εL. Making the
ansatz u(t, x) = (TD(t/ε)v(t, ·))(x) in (1.3), a short calculation yields

i∂tv = dav∂
2
xv − T−1

D(t/ε)

[
|TD(t/ε)v|2TD(t/ε)v

]
(1.5)

which is equivalent to (1.3) and still a non-autonomous equation.
For small ε, that is, in the regime of strong dispersion management, TD(t/ε) is fast oscillating

in the variable t, hence the solution v should evolve on two widely separated time-scales, a
slowly evolving part vslow and a fast oscillating part, which is hopefully small. Analogously
to Kapitza’s treatment of the unstable pendulum which is stabilized by fast oscillations of
the pivot, see [18], the effective equation for the slow part vslow was derived by Gabitov and
Turitsyn [7, 8] and a bit later by Ablowitz and Biondini [1]. It is given by integrating the fast
oscillating term containing UD(t/ε) over one period in t, treating the slowly varying part vslow
as constant in t over the small time–scale period εL,

i∂tvslow = dav∂
2
xvslow − 1

εL

∫ εL

0

T−1
D(s/ε)

[
|TD(s/ε)vslow|2TD(s/ε)vslow

]
ds

= dav∂
2
xvslow −Q(vslow, vslow, vslow),

(1.6)

where we made a simple change of variables s/ε → s and used (1.2). Of course, (1.6) is
nothing but (1.1) for the slow part vslow of the pulse in a dispersion managed glass–fiber
cable.
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This averaging procedure leading to (1.6) was rigorously justified for certain dispersion
profiles in [33]: Given an initial condition f in a suitable Sobolev space, the solutions of (1.6)
and (1.5) stay ε close – measured in certain Sobolev norms – over long distances 0 ≤ t ≤ C/ε,
see [33] for the precise formulation. Thus of special interest are stationary solutions of (1.7)
or its weak formulation (1.8), since they lead to breather like (quasi-)periodic solutions for
the original equation (1.3), whose average profile, for long t ≤ Cε−1, does not change (much)
even for large t, i.e., long cables, which cover, for example, intercontinental distances.
Making the ansatz u(t) = eiωtf in (1.1) yields the time independent Gabitov-Turitsyn

equation

−ωf = −dav∂2xf −Q(f, f, f). (1.7)

There is a corresponding weak formulation. Taking the scalar product with g ∈ C∞
0 (R) or

H1(R) in (1.7) and doing a judicious integration by parts using that Tr is unitary gives

−ω〈g, f〉 = dav〈g′, f ′〉 − Q(g, f, f, f, ) (1.8)

for all g ∈ H1(R), where the four-linear functional Q is, at least informally, given by

Q(f1, f2, f3, f4) :=
1

L

∫ L

0

∫
TD(s)f1(x)TD(s)f2(x)TD(s)f3(x)TD(s)f4(x) dsdx. (1.9)

Of course, this is, at the moment only on an informal level, since it is not a-priori clear that
Q or, equivalently, Q are well-defined if fl ∈ L2(R), or even if fl ∈ H1(R). However, they
turn out to be well defined for a large class of dispersion profiles d0, see Remark 3.5.i below.
In fact, it turns out that Q and Q are well–defined as soon as d0 changes sign only finitely
many times over its period and d−1

0 ∈ L1([0, L]), see [11].
Due to its importance for ultra-high speed long–haul data transfer through glass fiber cables,

there is an enormous amount of work on the level of numerics and theoretical physics on the
dispersion management technique, see, for example, [30, 31, 32] and the references therein,
but rigorous results are rare, we know of [5, 10, 11, 14, 15, 27, 33]. This is mainly caused
by the highly non–local and oscillatory nature of the nonlinearity Q, which makes it hard to
study. Moreover, except for [11, 33] these rigorous results consider only a model case for the
dispersion profile d0, which is the simplest choice of of a periodic mean–zero dispersion profile
given by

d0 = 1[0,1) − 1[1,2), (1.10)

where 1A is the characteristic function of the set A. This models the simplest case of a
dispersion managed cable; made up of alternating two different pieces of glass fibers whose
dispersions compensate each other. In this case D : [0, 2] → R is simply the tent function
D(s) = (1− |s− 1|)+ = max(0, 1− |s− 1|).
In addition, except for [33], the rigorous works mentioned above consider only the case

of vanishing average dispersion and most of them address the existence problem but do not
study much the fine properties of these solitons. For the model case (1.10), Lushnikov gave
convincing, but non–rigorous, heuristic arguments that the dispersion managed soliton solu-
tions of (1.7) should decay exponentially [20]. He conjectured that for dav = 0 the asymptotic
form of the dispersion–managed solitons should be given by

f(x) ∼ A cos(a0x
2 + a1x+ a2)e

−b|x| as x→ ∞ (1.11)
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for some constants A, aj , j = 0, 1, 2, and b > 0. Moreover, he confirmed this conjecture
numerically and also argued that the exponential decay of dispersion managed solitons should
also hold for positive average dispersion dav > 0.
The motivation for our work comes from the fact that recently a rigorous result became

available in which supports in part Lushnikov’s conjecture. It was shown in [5] that dispersion
management solitons decay exponentially both in time and frequency domains, at least in
the model case (1.10) and for vanishing average dispersion. In the present work we extend
the results from [5] to arbitrary non–negative average dispersion dav and to a large class of
dispersion profiles d0 which, we believe, covers most, if not all, physically relevant cases:

Assumption 1.1 (Assumptions on d0). a) Given L > 0, we say that the dispersion profile d0
is piecewise W 1,1 on [0, L] (or just piecewise W 1,1) if there is a finite partition 0 = c0 < c1 <
. . . < cN = L with N <∞ such that on each interval Ij := (cj , cj+1) the dispersion profile d0
is integrable with an integrable weak derivative.

b) Furthermore, d0 : [0, L] → R is bounded away from zero if

essinf
s∈[0,L]

|d0(s)| > 0. (1.12)

Remark 1.2. Conditions a) and b) above are certainly natural. The cables in a dispersion
managed fiber are made up by concatenating periodically finitely many different pieces of
glass–fibers which have different dispersion indices. One could argue that within such a piece
the dispersion usually is, to a good approximation, even constant. The resulting diffraction
profile d0 would thus even be piecewise constant and certainly bounded away from zero.
However, due to unavoidable imperfections in the manufacturing process of those glass–fiber
cables, it is unavoidable that the dispersion within a piece will locally vary, at least by a small
amount, and it would be rather unfortunate if the mathematical theory would necessarily
require a piecewise constant dispersion profile. With our method, we can even allow for a
smoothly varying local dispersion within each piece of glass–fiber cable, as long as it stays
away from zero. More precisely, we only need that d0 is absolutely continuous, i.e., has an
integrable weak derivative, in each piece of the partition, but d0 can jump and change sign
from one piece of the partition to another as long as it does not approach zero. This should
cover all physically relevant cases.

The following theorem is the main result.

Theorem 1.3 (Exponential decay). Assume that the dispersion profile d0 is piecewise W 1,1

and bounded away from zero on [0, L] and let f ∈ H1 be a solution of weak form of the (1.8)
for some ω > 0 and dav > 0 (respectively, f ∈ L2 is a solution of (1.8) for dav = 0). Then

there there exist constants µ, C > 0 such that for all x, k ∈ R

|f(x)| ≤ Ce−µ|x|, and |f̂(k)| ≤ Ce−µ|k|,

where f̂ is the Fourier transform of f .

An useful consequence of Theorem 1.3 is

Corollary 1.4. Assume that the dispersion profile d0 is piecewiseW
1,1 and bounded away from

zero on [0, L] . Then any weak solution f ∈ H1(R) of the dispersion management equation

(1.8) for some ω > 0 and dav > 0 (respectively, weak solution f ∈ L2 of (1.8) for dav = 0) is

analytic in a strip containing the real axis. The same holds for its Fourier transform f̂ .
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Proof. Since

f(x) =
1√
2π

∫ ∞

−∞

e−ikxf̂(k) dk and f̂(k) =
1√
2π

∫ ∞

−∞

eikxf(x) dx,

the exponential bounds from Theorem 1.3 immediately show that f and f̂ can be analytically
continued onto the strip {z = x+ iy : x ∈ R, |y| < µ}.

This result and, indeed, some of the technical machinery used in its proof, in particular, the
use of exponential weighted oscillatory integrals and multi-linear bounds, mirrors the result
in [5] for the model case, where the dispersion profile is given by (1.10). Note, however,
that the representation (2.1) from Proposition 2.1 shows that we have to bound oscillatory
integrals with the kernel D(s)−1, which is singular whenever D(s) =

∫ s

0
d0(α) dα = 0 and

since d0 changes sign D will have possibly plenty of zeros whose location is not known directly.
The model case (1.10) is much easier: D is known explicitly and one can straightforwardly
implement the change of variables r = D(s), which drastically simplifies the structure of the
four-linear functional Q and thus also the proof of the necessary multi-linear bounds for Q.
Much of the essential additional difficulty caused by the extension to more general dispersion
profiles away from the model case (1.10) to virtually all physically relevant dispersion profiles
d0 described by Assumption (1.1) and the extension to dav > 0 is unfortunately technical and
explained in Remark 3.5.ii below.
The paper is organized as follows: In Section 2 we discuss and establish several bounds for

the multi-linear operator Q. In Section 3 we introduce the majorant functionals K1 and K2

and deduce needed estimates for Q from multi-linear bounds on Kj , j = 1, 2. In Section 4 we
use the results we establish in Sections 2 and 3 to prove Theorem 1.3. Finally, we include a
technical appendix in which we prove the multi-linear bounds on the operators Kj .

2. A-priori estimates on Q
First we introduce some necessary notation. For 1 ≤ p ≤ ∞ we denote by Lp = Lp(R)

the usual scale of Lp–space with norm given by ‖ · ‖p. We will only need Lp on R. If p = 2,
we will simply write ‖ · ‖ for ‖ · ‖2. Furthermore, Hs = Hs(R) is the usual scale of L2 based
Sobolev spaces with norm ‖·‖Hs. The space L2 is a Hilbert space with scalar product given by

〈g, f〉 =
∫
R
g(x)f(x) dx, i.e., our scalar product in anti-linear in the first component and linear

in the second. With δ we denote the one–dimensional Dirac measure, or Dirac distribution,
i.e., for a (measurable, i.e., Borel) set A one has δ(A) =

∫
A
δ(s) ds = 1A(0). Here 1A is

the characteristic function, or indicator function, of the set A, i.e., 1A(x) = 1 if x ∈ A and
1A(x) = 0 if x 6∈ A. With |A| we denote the Lebesgue measure of a Borel subset A ⊂ R

d.
Lastly, we find it convenient to write f . g for two functions f and g if there is a universal
constant C > 0 such that f ≤ Cg.
We start with a representation of Q which is a bit more complicated but similar to the one

in [5].

Proposition 2.1. Assume that the dispersion profile d0 is piecewise W 1,1 on [0, L] and

bounded away from zero. Then for f1, f2, f3, f4 in the Schwarz class of rapidly decaying smooth

functions one has

Q(f1,f2, f3, f4) =
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1

4πL

∫

R4

∫ L

0

e−i
a(η)
4D(s)

ds

|D(s)| f1(η1)f2(η2)f3(η3)f4(η4) δ(η1 − η2 + η3 − η4)dη (2.1)

and

Q(f1,f2, f3, f4) =

1

2πL

∫

R4

∫ L

0

eiD(s)a(η) ds f̂1(η1)f̂2(η2)f̂3(η3)f̂4(η4) δ(η1 − η2 + η3 − η4)dη (2.2)

where a(η) := η21 − η22 + η23 − η24 and D(s) :=
∫ s

0
d0(α) dα.

Proof. Assume that fj is in the Schwarz class, then all expressions below are a-priori well
defined. Using the representation

Trfj(x) = eir∂
2
xf(x) =

1√
4πir

∫

R

ei
(x−y)2

4r fj(y) dy (2.3)

for the free Schrödinger evolution in (1.9) and collecting terms one sees

Q(f1, f2, f3, f4) =

1

(4π)2
1

L

∫ L

0

∫

R

∫

R4

e
−i a(η)

4D(s)
1

|D(s)|2f1(η1)f2(η2)f3(η3)f4(η4)e
i
x(η1−η2+η3−η4)

2D(s) dη dxds
(2.4)

Exchanging the η and x integration, making the change of variables x = 2D(s)z, and noting
that, as distributions, the Dirac measure is given by δ(α) = 1

2π

∫
R
eizα dz we arrive at

Q(f1, f2, f3, f4) =

1

4πL

∫ L

0

∫

R4

e−i
a(η)
4D(s)

1

|D(s)| f1(η1)f2(η2)f3(η3)f4(η4)δ(η1 − η2 + η3 − η4) dη ds
(2.5)

which, after exchanging the η and s integration, is (2.1).
The representation (2.2) follows from a similar line of reasoning, using the Fourier–repre-

sentation of the free Schrödinger evolution,

, Trf(x) =
1√
2π

∫

R

e−ixke−irk2 f̂(k) dk. (2.6)

Remark 2.2. The oscillatory integral

1

L

∫ L

0

eiD(s)a ds (2.7)

in (2.2) is certainly well-defined as long as d0 is integrable on [0, L]. One needs to be more
careful for the oscillatory integral

1

L

∫ L

0

e−i a
4D(s)

ds

|D(s)| . (2.8)

For example, note that even in the model case (1.10), where d0 is the difference of characteristic

functions, the integral L−1
∫ L

0
|D(s)|−1 ds =

∫ 1

0
r−1 dr diverges. Thus (2.8) exists only as an

oscillatory integral; to get useful bounds for it one has to invoke cancelations when D is
small, see, in particular, Lemma 2.7, Remark 2.8, and Corollary 2.9 below. We note that the
resulting bounds are a bit more involved than those for (2.7).
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The following is a key ingredient in our bounds for the oscillatory integrals. It allows us to
control the oscillatory integrals without explicit knowledge of the location of the zeros of D.

Lemma 2.3 (Sublevel set estimate). Let L > 0, d0 : [0, L) → R be bounded away from zero

change and sign finitely many times. Then, for D(s) :=
∫ s

0
d0(α) dα,

|{0 < s < L : |D(s)| < α}| . min(α, 1) (2.9)

for all α > 0.

Remark 2.4. This sublevel bound should be compared with the usual sublevel estimate
which is used in the proof on van der Corput’s lemma in harmonic analysis. There one
usually assumes that some derivative of D has a fixed sign, but does not need the assumption
that D change sign finitely many times, see Proposition 2.6.7 in [9].

Proof. Certainly |{0 < s < L : |D(s)| < α}| ≤ L . 1. The assumptions imply that D
has finitely many zeros in [0, L] and at each zero of D, the slope of D is bounded below by
δ := essinf0≤s≤L|d0(s)| > 0. Thus, for small enough α, {0 < s < L : |D(s)| < α} consists
of a finite number of intervals where each interval is of length at most α/δ. This shows
|{0 < s < L : |D(s)| < α}| . α for small α and hence (2.9) holds.

Corollary 2.5. Under the assumptions of Lemma 2.3, we have
∫ L

0

1√
D(s)

ds <∞. (2.10)

Proof. Note
∫ L

0

1√
D(s)

ds =
2

3

∫ L

0

∫

α>|D(s)|

α−3/2 dαds =
2

3

∫ ∞

0

α−3/2|{0 < s < L : |D(s)| < α}| dα

.

∫ ∞

0

α−3/2min(α, 1) dα <∞
(2.11)

due to (2.9) and since the integrand in the last integral is integrable for α close to 0 and close
to ∞.

Lemma 2.6. Assume that d0 is piecewise W 1,1 on [0, L] and bounded away from zero. Then,

for all a ∈ R, ∣∣∣∣
∫ L

0

eiaD(s) ds

∣∣∣∣ .
1

max(|a|, 1) (2.12)

where D(s) :=
∫ s

0
d0(α) dα.

Proof. Certainly,
∣∣ ∫ L

0
eiaD(s) ds

∣∣ ≤ L < ∞. On the other hand, let N < ∞ be the number of
intervals on which d0 is absolutely continuous and 0 = c0 < c1 < . . . < cN = L the partition
of [0, L] such that d0 is absolutely continuous on each interval Ik = (ck−1, ck). Then

∫ L

0

eiaD(s) ds =
N∑

j=1

∫

Ij

eiaD(s) ds (2.13)

and since D′ = d0

eiaD(s) =
(
eiaD(s)

)′ 1

iad0(s)
, (2.14)
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an integration by parts shows
∫

Ij

eiaD(s) ds =
1

ia

∫

Ij

(
eiaD(s)

)′ 1

d0(s)
ds =

1

ia

{[eiaD(s)

d0(s)

]cj
cj−1

+

∫

Ij

eiaD(s) d0
′(s)

d0(s)2
ds
}
. (2.15)

Note that d0
′ exists as an L1-function on each interval Ij. Thus, since δ := essinf

0≤s≤L
|d0(s)| > 0,

∣∣∣
∫

Ij

eiaD(s) ds
∣∣∣ ≤ 1

|a|
{2

δ
+

1

δ2

∫

Ij

|d0′| ds
}
. (2.16)

Summing over j in (2.16) using (2.13) yields (2.12) and shows that the implicit constant in
(2.12) depends on N , δ, and ‖d0′‖L1(Ij), j = 1, . . . , N .

For the last bound we need

Lemma 2.7. Assume that d0 is piecewise W 1,1 and bounded away from zero on [0, L]. Then,
for all a ∈ R, a 6= 0 and R > 0, we have

∣∣∣
∫

|D|.R

e−i a
4D(s)

1

|D(s)| ds
∣∣∣ . R

|a| (2.17)

where D(s) :=
∫ s

0
d0(α) dα.

Remark 2.8. First let’s make precise what we mean by the integral in (2.17): Choose a
smooth cut–off function ϕ : R → [0, 1] with ϕ(s) = 1 for |s| ≤ 1, ϕ(s) = 0 for |s| ≥ 2 and for
R > 0 put ϕR(s) := ϕ(s/R). Then we set

∫

|D|.R

e−i a
4D(s)

1

|D(s)| ds :=
∫ L

0

e−i a
4D(s)

ϕR(D(s))

|D(s)| ds. (2.18)

Proof of Lemma 2.7. Again let N < ∞ be the number of intervals on which d0 is absolutely
continuous and 0 = c0 < c1 < . . . < cN = L the partition of [0, L] such that d0 is absolutely
continuous on each interval Ik = [ck−1, ck) and

∫

|D|.R

e−i a
4D(s)

1

|D(s)| ds =
N∑

j=1

∫

Ij

e−i a
4D(s)

ϕR(D(s))

|D(s)| ds. (2.19)

Since

e−i a
4D(s) =

(
e−i a

4D(s)
)′ 4D(s)2

iaD′(s)

and D′ = d0, an integration by parts gives

∫

Ij

e−i a
4D
ϕR

|D| ds =
4

ia

∫

Ij

(
e−i a

4D

)′
ϕR(D)

|D|
d0

ds =

=
4

ia

{[
e

ia
4DϕR(D)

|D|
d0

]cj

cj−1

−
∫

Ij

e
ia
4D

[
ϕ′
R(D)

|D|
R

+ ϕR(D)
(
sgn(D)− |D|d0′

(d0)
2

)]
ds

}
(2.20)
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where sgn(r) = r/|r| for r 6= 0 and sgn(0) = 0. Because of max(|ϕ′
R|, ϕR) . ϕ2R and

ϕ2R(D)|D| . ϕ2R(D)R, taking the modulus above and using δ := inf0≤s≤L |d0(s)| > 0 yields
∣∣∣∣∣

∫

Ij

e
ia

4D(s)
ϕR(D(s))

|D(s)| ds

∣∣∣∣∣ .
1

|a|

{
R

δ
+

∫

Ij

ϕ2R(D(s)) ds+
R

δ2

∫

Ij

|d0(s)| ds
}
. (2.21)

Summing over j we see
∣∣∣∣
∫ L

0

e
ia

4D(s)
ϕR(D(s))

|D(s)| ds

∣∣∣∣ .
1

|a|
(
R +

∫ L

0

ϕ2R(D(s)) ds
)

.
1

|a|
(
R + |{0 ≤ s ≤ L : |D(s)| . R}|

)
.

R

|a|

(2.22)

where in the last line we used Lemma 2.3. This proves (2.17).

The last bound we need is an immediate consequence from Lemma 2.7.

Corollary 2.9. Assume that d0 is piecewise W 1,1 and bounded away from zero on [0, L].
Then, for all a ∈ R, a 6= 0, we have

∣∣∣
∫

|D|.|a|

e
ia

4D(s)
1

|D(s)| ds
∣∣∣ . 1

max(|a|, 1) (2.23)

where D(s) :=
∫ s

0
d0(α) dα.

Proof. Choose R = min(|a|, ‖D‖∞), where ‖D‖∞ = sups∈[0,L] |D(s)| ≤
∫ L

0
|d0(ν)| dν < ∞.

Then, since |D(s)| ≤ ‖D‖∞ for all s ∈ [0, L], the bound (2.17) from Lemma 2.7 gives
∣∣∣

∫

|D|.|a|

e
ia

4D(s)
1

|D(s)| ds
∣∣∣ =

∣∣∣
∫

|D|.R

e
ia

4D(s)
1

|D(s)| ds
∣∣∣ . min(|a|, ‖D‖∞)

|a|

which is (2.23).

3. Reduction to Multilinear Estimates

The representations for Q in Proposition 2.1 motivate the following

Definition 3.1. For a piecewise W 1,1 dispersion profile d0 on [0, L] which is bounded away
from zero we define the multi-sub-linear functions

K1(h1, h2, h3, h4) :=

∫

R4

1

L

∣∣∣
∫ L

0

e−i a(η)
4D(s)

ds

|D(s)|
∣∣∣

4∏

ν=1

|hν(ην)| δ(η1 − η2 + η3 − η4)dη (3.1)

and

K2(h1, h2, h3, h4) :=

∫

R4

1

L

∣∣∣
∫ L

0

eiD(s)a(η) ds
∣∣∣

4∏

ν=1

|hν(ην)| δ(η1 − η2 + η3 − η4)dη (3.2)

where a(η) := η21 − η22 + η23 − η24 and D(s) =
∫ s

0
d0(α) dα.
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Remark 3.2. The multi-sub-linear functionals K1 and K2 are certainly defined for all (mea-
surable) functions h1, h2, h3, h4, taking the value ∞, if necessary, but it seems unclear, at first,
when they are finite and hence useful at all. For the convenience of the reader, we note that
Proposition 3.4 below gives us the bounds

K1(h1, h2, h3, h4) .

4∏

n=1

‖hn‖

and

K2(h1, h2, h3, h4) .
4∏

n=1

‖hn‖,

where the implicit constant depends only on the dispersion profile d0 and is finite if d0 is
piecewise W 1,1 and bounded away from zero. Thus K1 and K2 are well–defined for all hn ∈
L2(R), n = 1, 2, 3, 4.

A judicious use of the triangle inequality in (2.1) and (2.2) yields the following immediate

Corollary 3.3. The bounds

|Q(f1, f2, f3, f4)| ≤
1

4π
K1(f1, f2, f3, f4)

|Q(f1, f2, f3, f4)| ≤
1

2π
K2(f̂1, f̂2, f̂3, f̂4)

(3.3)

hold, where f̂ is the Fourier transform of f .

The following multi-sub-linear bounds are crucial for our result.

Proposition 3.4 (Multi–sub-linear bounds). Assume that the dispersion profile d0 is piece-

wise absolutely continuous on [0, L] and bounded away from zero. Then

Kj(h1, h2, h3, h4) .
4∏

n=1

‖hn‖ (3.4)

for j = 1, 2. If for some l, m ∈ {1, 2, 3, 4} one has τ := dist(supp (hl), supp (hm)) > 0, then

Kj(h1, h2, h3, h4) . τ−1/2

4∏

n=1

‖hn‖ (3.5)

for j = 1, 2. The implicit constant in the above bounds depends only on d0.

As it is highly technical, we defer the proof of this Proposition to in Appendix A for the
convenience of the reader.

Remarks 3.5. (i) Of course, either bound above together with Proposition 3.4 in the appen-
dix shows

|Q(f1, f2, f3, f4)| .
4∏

n=1

‖fn‖. (3.6)

Thus Q : S4 → R, a priori defined for fn in the Schwartz class S, extends by multi–linearity
and continuity to a well-defined bounded four-linear functional Q : (L2(R))4 → R and, by
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duality, since 〈g,Q(f1, f2, f3)〉 = Q(g, f1, f2, f3), the three–linear map Q also extends by multi-
linearity and continuity to a three–linear map Q : L2(R)3 → L2(R) with

‖Q(f1, f2, f3)‖ .

3∏

j=1

‖fj‖. (3.7)

This shows that Q, respectively Q, in (1.2), respectively (1.9), are well–defined on (L2(R))4,
respectively, (L2(R))3, as long as d0 is piecewise W 1,1 and bounded away from zero.

(ii) In fact, Q and Q are well-defined for a much larger class of dispersion profiles d0, see
[11] for details, but for us the conditions of Proposition 3.4 are enough. In previous works, it
had turned out to be advantageous to do another change of variables: Setting r = D(s), one
rewrites the definition of Q in (1.2) and of Q in (1.9) as

Q(f1, f2, f3) =

∫
T−1
r

[
(Trf1)(Trf2)(Trf3)

]
µ(dr)

and

Q(f1, f2, f3, f4) =

∫ ∫
Trf1(x)Trf2(x)Trf3(x)Trf4(x)µ(dr)dx

where µ is a probability measure given by

µ(A) =
1

L

∫ L

0

1A(D(s)) ds,

and still D(s) =
∫ s

0
d0(α) dα. When one can directly work with Q, this leads to some sim-

plifications since the one-dimensional Strichartz inequality [6, 12, 28] yields boundedness of
Q as soon as µ has a density ψ ∈ L2, see [11]. Under rather general assumptions on d0, see
the discussion in [11], the measure µ indeed has a density ψ, i.e., µ(dr) = ψ(r) dr. Further,
ψ ∈ L2 is implied by d−1

0 ∈ L1([0,L]), see Lemma 1.4 and Lemma B.1 in [11] for details.
However, unlike in the existence proof in [11], we have to work with K1 and K2 and not
directly with Q mainly because of Theorem 3.7 below and we have to use an ‘integration by
parts’ type argument to control the oscillatory integrals in the definition of K1 and K2. Using
the probability measure µ(dr) = ψ(r)dr, the oscillatory integrals (2.7), respectively (2.8), in
the definition of K1, respectively K2, can be rewritten as

∫
e−i a

4r
1

|r|ψ(r) dr, respectively
∫
eiraψ(r) dr. (3.8)

Thus the necessary oscillatory bounds would follow from suitable smoothness properties of ψ.
In the model case (1.10), which is the case most often studied so far, this density turns out to
be given by ψ = 1[0,1], which results in considerable simplifications in the necessary oscillatory
and multi-linear bounds for K1 and K2 in [5]. However, already this model case shows that
ψ must have jump discontinuities in general. Unlike in the existence proof of [11], where
only Lp properties of ψ were needed, which, in turn, follow from Lp−1 properties of d−1

0 , see
Lemma 1.4 in [11], we found it rather inconvenient to deduce the necessary differentiability
properties of ψ from natural conditions on d0. Instead, it turned out to be easier to avoid the
above change of variables and work with the oscillatory integrals in (2.7) and (2.8) and the
Definition 3.1 directly, based on, in particular, Lemma 2.7 and Corollary 2.9.
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Lastly, as in [5], in the proof of the exponential decay estimates a key ingredient are multi-
linear bounds for suitably exponentially twisted versions of K1 and K2 which are uniform in
the twist. First the definition of the twisted functionals:

Definition 3.6. Let F : R → [0,∞) be a symmetric function which obeys the triangle
inequality, i.e., F (−x) = F (x) and F (x+y) ≤ F (x)+F (y) for all x, y ∈ R. The exponentially
twisted functionals K1

F and K2
F are defined by

Kj
F (h1, h2, h3, h4) := Kj(eFh1, e

−Fh2, e
−Fh3, e

−Fh4) j = 1, 2. (3.9)

SinceK1 andK2 are highly nonlocal, it seems at first rather surprising thatKj
F is even finite

for an unbounded exponential twist F , since the factor eF in the first entry of the definition
of Kj

F is potentially exponentially large. But exponentially twisted sub–linear functionals Kj
F

are not only well-defined but, even more surprisingly, they are bounded by F = 0, as the
following theorem shows, whose proof is astonishingly simple. Together with Proposition 3.4
it yields multi–linear bounds for Kj

F which are uniform in the exponential twist F , as long as
F is even and obeys the triangle inequality.

Theorem 3.7. Let F : R → [0,∞) be a symmetric function which obeys the triangle inequal-

ity, i.e., F (x+ y) ≤ F (x) + F (y) for all x, y ∈ R. Then for all hl ∈ L2(R), l = 1, . . . , 4,

Kj
F (h1, h2, h3, h4) ≤ Kj(h1, h2, h3, h4), j = 1, 2. (3.10)

Proof. By the definition of K1 one has

K1
F (h1, h2, h3, h4)

=

∫

R4

1

L

∣∣∣
∫ L

0

e−i
a(η)
4D(s)

ds

|D(s)|
∣∣∣eF (η1)−F (η2)−F (η3)−F (η4)

4∏

j=1

|hj(ηj)| δ(η1 − η2 + η3 − η4)dη

(3.11)

On the support of the measure δ(η1 − η2+ η3 − η4)dη on R
4 one has η1 − η2+ η3 − η4 = 0 and

hence

F (η1) = F (η2 − η3 + η4) ≤ F (η2) + F (η3) + F (η4)

since F is symmetric and obeys the triangle inequality. In particular, one has

eF (η1)−F (η2)−F (η3)−F (η4) ≤ 1

in the integral in (3.11) and the bound K1
F (h1, h2, h3, h4) ≤ K1(h1, h2, h3, h4) follows immedi-

ately. The same proof shows K2
F (h1, h2, h3, h4) ≤ K2(h1, h2, h3, h4).

4. The Exponential Decay

4.1. The proof of exponential decay: real space. In this section, we prove an L2–version
of the exponential decay, namely

Proposition 4.1. Assume that d0 is piecewise W 1,1 and bounded away from zero on [0, L]
and that f ∈ H1 is a solution of (1.8) for some ω > 0 and dav > 0 (respectively, f ∈ L2 is a

solution of (1.8) for dav = 0). Then there exists µ > 0 such that the exponentially weighted

function x 7→ eµ|x|f(x) is still in L2(R).
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To show that dispersion management solitons have exponential decay we start with the weak
form of the dispersion management equation (1.8). Let ξ ∈ C∞

b (R) be a real-valued bounded
infinitely often differentiable function whose derivative is bounded. Choosing g = ξ2f in (1.8)
one sees

−ω‖ξf‖2 = −ω〈ξ2f, f〉 = dav〈(ξ2f)′, f ′〉 − Q(ξ2f, f, f, f) (4.1)

Since −ω‖ξf‖2 is real we can take the real part above to get

−ω‖ξf‖2 = davRe〈(ξ2f)′, f ′〉 − ReQ(ξ2f, f, f, f) (4.2)

We deal with the real part of the kinetic energy term with the help of the following simple

Lemma 4.2. Let ξ be a real-valued bounded smooth function whose derivative is bounded and

f ∈ H1(R), then ξf, ξ2f ∈ H1(R) and

Re〈(ξ2f)′, f ′〉 = 〈(ξf)′, (ξf)′〉 − 〈f, |ξ′|2f〉 (4.3)

Proof. This is, of course, nothing but a one-dimensional version of the well known IMS lo-
calization formula for the kinetic energy, see [4], and it holds in much greater generality. We
give a short proof for the convenience of the reader.
Due to the smoothness and boundedness assumptions on ξ it is clear that ξf and ξ2f are

in H1(R). By density, it is also enough to prove (4.3) for f ∈ C∞
0 (R). Let H be an operator,

in our case it will be given by H = −∂2x, and assume that C∞
0 (R) is in the domain of H . Then

[H, ξ] = Hξ − ξH (4.4)

and the iterated commutator is given by

[[H, ξ], ξ] = Hξ2 − 2ξHξ + ξ2H. (4.5)

Hence

Re〈ξ2f,Hf〉 = 1

2
〈f, (ξ2H +Hξ2)f〉 = 〈f, ξHξf〉 − 1

2
〈f, [[H, ξ], ξ]f〉

= 〈ξf,Hξf〉 − 1

2
〈f, [[H, ξ], ξ]f〉

(4.6)

If H = −∂2x, then one calculates [[H, ξ], ξ] = 2|ξ′|2 and thus (4.6) yields

Re〈(ξ2f)′, f ′〉 = Re〈ξ2f,−∂2xf〉 = 〈ξf,−∂2x(ξf)〉 − 〈f, |ξ′|2f〉
= 〈(ξf)′, (ξf)′〉 − 〈f, |ξ′|2f〉,

(4.7)

at least for f ∈ C∞
0 (R) and then by density for all f ∈ H1(R).

Using (4.3) in (4.2), dropping the non-negative term dav〈(ξf)′, (ξf)′〉, bounding ReQ by
|Q|, and using Corollary 3.3, one gets

‖ξf‖2 ≤ ω−1(dav〈f, |ξ′|2f〉+ |Q(ξ2f, f, f, f)|) . 〈f, |ξ′|2f〉+K1(ξ2f, f, f, f) (4.8)

where the implicit constant depends only on ω, dav, and L.
No we come to the choice of ξ: Choose a smooth function χ with 0 ≤ χ ≤ 1, χ(x) = 0

for |x| ≤ 3/21, χ(x) = 1 for |x| ≥ 2, and for τ > 0 put χτ (x) := χ(x/τ). Furthermore, for
ε, µ > 0 set

F (x) = Fµ,ε(x) =
µ|x|

1 + ε|x| . (4.9)

1That χ = 0 on (−3/2, 3/2) is mainly for convenience in the proof of Lemma 4.4.
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Then we put ξ := eFµ,εχτ , i.e., ξ is an exponentially weighted cut–off function which is smooth,
since Fµ,ε is smooth on the support of χτ .

Lemma 4.3. With ξ = eFµ,εχτ and the choice µ = τ−1 one has

〈f, |ξ′|2f〉 . 1

τ 2
(
‖f‖2 + ‖eFµ,εχτf‖2

)

uniformly in τ, ε > 0, where the implicit constant depends only on ‖χ′‖∞.

Proof. Recall that F = Fµ,ε is given by (4.9), ξ = eFχτ where χ is a smooth cut–off function
with 0 ≤ χ ≤ 1, χ(x) = 0 for |x| ≤ 3/2, χ(x) = 1 for |x| ≥ 2, and χτ (x) = χ(x/τ), and
ξ = eFχτ . In view of |F ′(x)| = |F ′

µ,ε(x)| = µ(1 + ε|x|)−2 ≤ µ for all ε > 0 and x 6= 0 and

(χτ )
′ = τ−1(χ′)τ ,

ξ′ = (eFχτ )
′ ≤ µeFχτ +

1

τ
eF (χ′)τ .

Thus

|ξ′|2 ≤ 2e2F (µ2χ2
τ + τ−2(χ′)2τ ).

Moreover, because χ′(x) = 0 if |x| ≥ 2, we have (χ′)τ (x) = 0 for |x| ≥ 2τ and thus

e2F (χ′)2τ ≤ e2F (2τ)‖χ′‖2∞ ≤ e4µτ‖χ′‖2∞.
In particular,

〈f, |ξ′|2f〉 ≤ 2
(
µ2‖eFχτf‖2 + e4µτ τ−2‖χ′‖2∞‖f‖2

)
≤ 2max(1, e4‖χ′‖2∞)

τ 2
(
‖eFχτf‖2 + ‖f‖2

)

for µ = τ−1, which proves Lemma 4.3.

Lemma 4.4. With the choice µ = τ−1 one has

K1(e2Fµ,εχ2
τf, f, f, f) . ‖eFµ,εχτf‖4 + ‖eFµ,εχτf‖3 + cf(τ)‖eFµ,εχτf‖2 + cf (τ)‖eFµ,εχτf‖

where the implicit constant depends only on ‖f‖ and cf(τ) denotes terms which, for fixed

f ∈ L2, go to zero as τ → ∞ uniformly in ε > 0.

Proof. We will continue to abbreviate Fµ,ε, given by (4.9), by F . Note that χτ ≤ 1, so by
monotonicity and Definition 3.1 of K1,

K1(e2Fχ2
τf, f, f, f) ≤ K1(e2Fχτf, f, f, f).

Define h := eFf and h> := eFχτf = χτh so that h> is supported on {x ∈ R| |x| ≥ 3τ/2}.
Then, using the twisted functional K1

F given in (3.6), one sees

K1(e2Fχτf, f, f, f) = K1(eFh>, e
−Fh, e−Fh, e−Fh) = K1

F (h>, h, h, h) ≤ K1(h>, h, h, h)

where we also used Theorem 3.7, which applies since F given by (4.9) obeys the triangle
inequality. Thus, in order to prove Lemma 4.4, we have to show that for µ = τ−1 the bound

K1(h>, h, h, h) ≤ C(‖h>‖4 + ‖h>‖3) + cf (τ)(‖h>‖2 + ‖h>‖) (4.10)

holds for some constant C which depends only on ‖f‖ and where cf(τ) denotes a term which,
for fixed f ∈ L2, goes to zero as τ → ∞ uniformly in ε > 0.
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Continuing with the proof of (4.10) recall that h< = h−h> = (1−χτ )h. Using sub-linearity
of K1 one sees

K1(h>, h, h, h) ≤ K1(h>, h>, h>, h>) +K1(h>, h>, h>, h<)

+K1(h>, h>, h<, h<) +K1(h>, h<, h<, h<)

+ cyclic permutations of the last 3 entries of K1.

(4.11)

For the first term in (4.11) Proposition 3.4 yields

K1(h>, h>, h>, h>) ≤ C‖h>‖4 (4.12)

for some constant C. Also

K1(h>, h>, h>, h<) ≤ C‖h>‖3‖h<‖.
Put f< = (1−χτ )f and note that since f< supported on the set [−2τ, 2τ ] and F is increasing,
we have

‖h<‖ = ‖eFf<‖ ≤ eF (2τ)‖f<‖ ≤ e2µτ‖f‖ (4.13)

since F (2τ) = Fµ,ε(2τ) ≤ 2µτ uniformly in ε > 0. Thus

K1(h>, h>, h>, h<) ≤ Ce2µτ‖f‖‖h>‖3 = Ce2‖f‖‖h>‖3 (4.14)

when µ = τ−1 and the same bound holds for cyclic permutations of the last 3 entries in K1.
To bound the third and fourth terms in (4.11) let 1A be the characteristic function of a set

A ⊂ R and define

h≪ := 1[−τ,τ ]h

h∼ := h− h> − h< = (1− χτ )h− h< = (1− χτ )1[−τ,τ ]ch

and similarly for f≪ and f∼. Since f≪ is supported on [−τ, τ ] and f∼ is supported on the
‘annulus’ [−2τ, 2τ ] \ [−τ, τ ], we have in addition to (4.13) the bounds

‖h≪‖ ≤ eµτ‖f‖ and ‖h∼‖ ≤ e2µτ‖f∼‖. (4.15)

Note

K1(h>, h>, h<, h<) = K1(h>, h>, h∼ + h≪, h<) ≤ K1(h>, h>, h∼, h<) +K1(h>, h>, h≪, h<).

By (3.4) together with (4.13) and (4.15) we have

K1(h>, h>, h∼, h<) ≤ C‖h>‖2‖h∼‖‖h<‖ ≤ Ce4µτ‖f∼‖‖f‖‖h>‖2.
Since the supports of h> and h≪ are separated by at least τ/2, the bound (3.5) yields

K1(h>, h>, h≪, h<) ≤
C√
τ
‖h>‖2‖h≪‖‖h<‖ ≤ Ce3µτ√

τ
‖f‖2‖h>‖2

where we also used (4.13) and (4.15). Together this gives

K1(h>, h>, h<, h<) ≤ C‖f‖
(
e4µτ‖f∼‖+

e3µτ√
τ
‖f‖

)
‖h>‖2 .

(
‖f∼‖+ τ−1/2

)
‖h>‖2

for µ = τ−1. Since f ∈ L2, ‖f∼‖ goes to zero as τ → ∞. Thus, with cf (τ) := ‖f∼‖ + τ−1/2,
the above shows

K1(h>, h>, h<, h<) ≤ cf(τ)‖h>‖2 (4.16)

where, for fixed f ∈ L2, the term cf (τ) goes to zero as τ → ∞ uniformly in ε > 0 and the
same bound holds for cyclic permutations of the last 3 entries in K1.
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For K1(h>, h<, h<, h<) note that an argument virtually identical to the one for bounding
K1(h>, h>, h<, h<) yields

K1(h>, h<, h<, h<) ≤ K1(h>, h∼, h<, h<) +K1(h>, h≪, h<, h<)

≤ C‖h>‖‖h∼‖‖h<‖2 +
C√
τ
‖h>‖‖h≪‖‖h<‖2

≤ C‖f‖2
(
‖f∼‖e6µτ + τ−1/2e5µτ‖f‖

)
‖h>‖ . cf(τ)‖h>‖

for µ = τ−1, where again, for fixed f ∈ L2, the term cf(τ) goes to zero as τ → ∞ uniformly

in ε > 0.
Plugging (4.12), (4.14), (4.16), and (4.1) into (4.11) shows (4.10) and hence the Lemma.

Remark 4.5. While at first it seems surprising that one can bound K1(h>, h, h, h) solely in
terms of ‖h>‖, using sublinearity one can easily see that K1(h>, h, h, h) can be bounded in
terms of ‖h>‖ together with ‖h<‖ where h< = h − h> = (1 − χτ )h. Since h< has support
in [−2τ, 2τ ], one has ‖h<‖ ≤ e2µτ‖f<‖ and this is bounded by ‖f‖ if one chooses µ = τ−1.
This is why we have to make this choice for µ. More refined arguments are needed to see that
certain terms in the bound go to zero as τ → ∞, as seen in the arguments above.

These lemmata, together with (4.8), yield the L2–exponential decay of f :

Proof of Proposition 4.1. Using Lemma 4.3 and 4.4 on the right hand side of (4.8), we get

‖eFµ,εχτf‖2 ≤ C
(
‖eFµ,εχτf‖4 + ‖eFµ,εχτf‖3

)
+ cf(τ)

(
‖eFµ,εχτf‖2 + ‖eFµ,εχτf‖

)
+ cf(τ)

where we always put µ = τ−1 and cf(τ) denotes terms which, for fixed f ∈ L2, go to zero as

τ → ∞ uniformly in ε > 0. Defining ‖f‖τ,ε := ‖eFτ−1,εχτf‖ we can rewrite the above bound
as

(1− cf (τ))‖f‖2τ,ε − C
(
‖f‖3τ,ε + ‖f‖4τ,ε

)
− cf (τ)‖f‖τ,ε ≤ cf (τ) (4.17)

Consider the function G̃ : [0,∞) → R, given by G̃(ν) := ν2/2 − C(ν3 + ν4). It is clear

that there is a ν̃ > 0 such that G̃(ν) is positive for small 0 < ν < ν̃ and negative for ν > ν̃

and G̃ has a (single) strictly positive maximum at a point 0 < ν̃m < ν̃. By continuity, there

is a δ > 0 such that the function G : [0,∞) → R given by G(ν) := G̃(ν) − δν still has a
strictly positive maximum, say Gmax > 0 and, moreover, there are 0 < ν1 < ν2 such that
G(ν) ≤ Gmax/2 implies ν ∈ [0, ν1] ∪ [ν2,∞).
Now choose τ > 0 so large that cf (τ) ≤ min(δ, 1/2). Then (4.17) can be rewritten as

G(‖f‖τ,ε) ≤ cf(τ). (4.18)

The bound (4.18) is our main tool, since it allows us to deduce the finiteness of ‖f‖τ,ε in the
limit ε → 0 from the smallness of ‖f‖τ,ε in the limit2 ε→ ∞. This is a two punch argument
and goes as follows:
As a preparation: if we choose τ so large that cf (τ) < Gmax/2, then (4.18) shows that

‖f‖τ,ε must be trapped in the region [0, ν1]∪ [ν2,∞). Note that since neither G nor the cf(τ)
term on the right hand side of (4.18) depend on ε > 0, this is uniformly in ε > 0.
The first punch of our argument is that the map 0 < ε 7→ ‖f‖τ,ε is continuous. By

continuity, as long as τ is so large that cf(τ) < min(δ, 1/2, Gmax/2), the bound (4.18) ensures

2The reader who is uncomfortable with first letting ε → ∞ in order to deduce something useful for the
limit ε → 0, should replace ε by α in the argument.



EXPONENTIAL DECAY OF DISPERSION MANAGED SOLITONS 17

that, as long as ‖f‖τ,ε0 ≤ ν1 for some ε0 > 0, one has ‖f‖τ<ε0 ≤ ν1 for all ε > 0, because
in order to go from ‖f‖τ,ε0 ≤ ν1 to ‖f‖τ,ε1 ≥ ν2, the bound (4.18) would have to violated at
some intermediate value of ε > 0 by the intermediate value theorem for continuous functions.
The second, and final, punch of our argument is that by choosing τ be even larger, if

necessary, we can assume that ‖χτf‖ < ν1 and letting ε→ ∞, one sees

lim
ε→∞

‖f‖τ,ε = lim
ε→∞

‖eFτ−1,εχτf‖ = ‖χτf‖ < ν1 (4.19)

where the last equality follows from Lebesgue’s dominated convergence convergence theorem,
since limε→∞ Fτ−1,ε = 0 pointwise and Fτ−1,ε ≤ τ−1 for ε ≥ 1. So for large enough ε > 0 we
indeed have ‖f‖τ,ε < ν1 and thus, by the above argument, we have ‖f‖τ,ε < ν1 for all ε > 0.
Hence

‖eFµ,0χτf‖ = lim
ε→0

‖f‖τ,ε = sup
ε>0

‖f‖τ,ε ≤ ν1, (4.20)

by the monotone convergence theorem. Since x 7→ eτ
−1|x| = eFτ−1,0(x) is locally bounded and

1− χτ has support in [−2τ, 2τ ], the above bound shows that

‖eFτ−1,0f‖ ≤ ‖eFτ−1,0(1− χτ )f‖+ ‖eFτ−1,0χτf‖ ≤ e2‖f‖+ ν1 <∞ (4.21)

which finishes the proof.

4.2. The proof of exponential decay: Fourier space. In this section, we prove an L2–
version of the exponential decay for the Fourier transform, namely

Proposition 4.6. Assume that d0 is piecewise W 1,1 and bounded away from zero on [0, L]
and that f ∈ H1 is a solution of (1.8) for some ω > 0 and dav > 0 (respectively, f ∈ L2 is a

solution of (1.8) for dav = 0). Then there exists µ > 0 such that x 7→ eµ|x|f̂(x) ∈ L2(R).

Proof. The proof of this Proposition is actually a bit simpler than the one for Proposition 4.1.
Let p = −i∂x the the one-dimensional momentum operator and let the cut–off functions χ,

χτ , and F = Fµ,ε from (4.9) be as before in the proof of Proposition 4.1. Furthermore, let ξ
now the the operator given by ξ := eF (P )χτ (P ), which is, of course, given by multiplying by
eF (k)χτ (k) in Fourier space and lastly, given f ∈ L2 choose g = ξ2f . If f solves (1.7) then
(1.8) yields

−ω‖eFχτ f̂‖2 = −ω〈ĝ, f̂〉 = −ω〈g, f〉 = dav〈g′, f ′〉 − Q(g, f, f, f)

Since ξ is symmetric and commutes with derivatives, one has

〈g′, f ′〉 = 〈ξ2f ′, f ′〉 = 〈(ξf)′, (ξf)′〉 ≥ 0

and, because dav ≥ 0, we can drop the kinetic energy term to see

‖eFχτ f̂‖2 . Q(ξ2f, f, f, f) ≤ |Q(ξ2f, f, f, f)| . K2(e2Fχ2
τ f̂ , f̂ , f̂ , f̂). (4.22)

For K2 we have a similar bound as for K1 in Lemma 4.4:

Lemma 4.7. With the choice µ = τ−1 one has

K2(e2Fµ,εχ2
τ f̂ , f̂ , f̂ , f̂) . ‖eFµ,εχτ f̂‖4 + ‖eFµ,εχτ f̂‖3 + cf(τ)‖eFµ,εχτ f̂‖2 + cf (τ)‖eFµ,εχτ f̂‖

where the implicit constant depends only on ‖f‖ and cf(τ) denotes terms which go to zero as

τ → ∞ uniformly in ε > 0.

Proof. With the bounds from Theorem 3.7 and Proposition 3.4 this is proven exactly the same
way as Lemma 4.4.
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This Lemma and the above argument show

‖eFµ,τχτ f̂‖ ≤ C‖eFµ,εχτ f̂‖3 + C‖eFµ,εχτ f̂‖2 + cf (τ)‖eFµ,εχτ f̂‖+ cf (τ)

for some constant C, or introducing H(ν) := ν/2− C(ν3 + ν2), we have

H(‖eFµ,εχτ f̂‖) ≤ cf (τ) (4.23)

for µ = τ−1 and all τ large enough such that o(1) ≤ 1/2. Because f̂ ∈ L2, we can deduce from
(4.23) with a similar argument as in the proof of Proposition 4.1 that for some large enough

τ > 0 the map k 7→ eτ
−1|k|f̂(k) ∈ L2. In fact, this is the original proof in [5] for dav = 0. This

proves Proposition 4.6.

4.3. Proof of exponential decay: Uniform bounds. Given Propositions 4.1 and 4.6, the
proof of Theorem 1.3 is a simple interpolation. Let f ∈ L2 be a solution of (1.8). Then
Proposition 4.6 implies f ∈ H∞(R), in particular, it is infinitely often differentiable. Thus for
x ≥ 0

eµ|x||f(x)|2 = eµ|x|
∣∣∣∣
∫ ∞

x

d

ds
|f(s)|2 ds

∣∣∣∣

≤ 2

∫ ∞

0

eµ|s||f(s)||f ′(s)| ds ≤ 2‖eµ|x|f‖‖f ′‖ ≤ C <∞

for small enough µ > 0. Similarly, eµ|x||f(x)|2 ≤ C for small enough µ and x ≤ 0. Analogously,

one gets the pointwise exponential decay of f̂ . This proves Theorem 1.3.

Appendix A. Proof of Proposition 3.4

Here we finish our argument by proving Proposition 3.4. Given the bounds from Lemma
2.6 and Corollary 2.9, the argument is formally similar to the multi-linear bounds of Propo-
sitions 2.5 and 2.6 in [5], but requires more care. Many of these difficulties are explained
in Remark 3.5.ii. Here we remind the interested reader that this need for more care arises
primarily from the extention to more general dispersion profiles. In particular, we note that
the oscillatory integrals one needs to bound take the form of

∫
e−i a

4D(s)
1

|D(s)|ψ(s) ds.

In the model case (1.10) when d0 = 1[0,1) − 1[1,2), one has that D(s) = s and ψ = 1[0,1].
In allowing for more general dispersion profiles, we lose these simplifications and require a
somewhat more delicate use of the bounds in Section 2.
First note the bounds

∫

{|η1−η2|≤R}

4∏

n=1

|hn(ηn)|δ(η1 − η2 + η3 − η4) dη ≤ 2R

4∏

n=1

‖hn‖,

∫

{|η2−η3|≤R}

4∏

n=1

|hn(ηn)|δ(η1 − η2 + η3 − η4) dη ≤ 2R

4∏

n=1

‖hn‖,
(A.1)
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for all R ≥ 0. For notational convenience we will abbreviate the measure δ(η1−η2+η3−η4) dη
by dρ. To prove (A.1) simply note that using Cauchy-Schwarz inequality and the properties
of the Dirac measure one sees, for example,

∫

{|η1−η2|≤R}

4∏

n=1

|hn(ηn) dρ ≤
( ∫

{|η1−η2|≤R}

|h1(η1)|2|h3(η3)|2 dρ
)1/2

×
( ∫

{|η1−η2|≤R}

|h2(η1)|2|h4(η3)|2 dρ
)1/2

= 2R

4∏

n=1

‖hn‖.

Now we show the bound (3.4) for K1. We split the s-integral in the definition (3.1) of K1

into a region {s ∈ [0, L]| |D(s)| . |a(η)|}, where oscillations are important, and a region
{s ∈ [0, L]| |D(s)| & |a(η)|}, where they are not. Thus

K1(h1, h2, h3, h4) ≤
1

L

∫

R4

∣∣∣
∫

{|D(s)|.|a(η)|}

e
ia(η)
4D(s)

ds

|D(s)|
∣∣∣

4∏

n=1

|hn(ηn)| dρ

+
1

L

∫

R4

∣∣∣
∫

{|D(s)|&|a(η)|}

e
ia(η)
4D(s)

ds

|D(s)|
∣∣∣

4∏

n=1

|hn(ηn)| dρ

.

∫

R4

1

max(|a(η)|, 1)

4∏

n=1

|hn(ηn) dρ (A.2)

+

∫∫

(s,η)∈[0,L]×R
4

|D(s)|&|a(η)|

1

|D(s)|

4∏

n=1

|hn(ηn) dsdρ (A.3)

where we also used the bound (2.23) for the first part and the triangle inequality for the
second. Note that a(η) = 2(η1 − η2)(η2 − η3) on the set η1 − η2 + η3 − η4 = 0. Thus,

{|D(s)| & |a(η)|} = {|η1 − η2||η2 − η3| . |D(s)|}
⊂ {|η1 − η2| .

√
|D(s)| or |η2 − η3| .

√
|D(s)|}.

Hence using Fubini-Tonelli and (A.1) with R =
√
|D(s)| for the dρ = δ(η1 − η2 + η3 − η4)dη

integration, one sees

(A.3) ≤
∫∫

|η1−η2|.
√

|D(s)|

or |η2−η3|.
√

|D(s)|

1

|D(s)|

4∏

n=1

|hn(ηn) dρds

.

∫ L

0

ds√
|D(s)|

4∏

n=1

‖hn‖ .

4∏

n=1

‖hn‖, (A.4)

where we also used Corollary 2.5.
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To bound (A.2), we split the η-integration into the parts {|η1 − η2| ≤ 1 or |η2 − η3| ≤ 1}
and {|η1 − η2| ≥ 1 and |η2 − η3| ≥ 1}. Thus

(A.2) .

∫

|η1−η2|≤1
or |η2−η3|≤1

4∏

n=1

|hn(ηn) dρ (A.5)

+

∫

|η1−η2|≥1
and |η2−η3|≥1

1

|η1 − η2||η2 − η3|

4∏

n=1

|hn(ηn)| dρ (A.6)

The bound (A.1) with R = 1 immediately shows (A.5) .
∏4

n=1 ‖hn‖. On the other hand, the
Cauchy-Schwarz inequality yields

(A.6) ≤
( ∫

|η1−η2|≥1
and |η2−η3|≥1

1

|η1 − η2|2|η2 − η3|2
|h1(η1)|2 dρ

)1/2(∫

R4

|h2(η2)|2|h2(η3)|2|h2(η4)|2 dρ
)1/2

= 2

4∏

n=1

‖hn‖ (A.7)

where we also used that the Dirac measure kills the η4, respectively, η1 integration. Thus
(A.2) .

∏4
n=1 ‖hn‖ and so (3.4) holds for j = 1.

To bound K2, simply note that by Lemma 2.6 we have

K2(h1, h2, h3.h4) .

∫

R4

1

max(|a(η)|, 1)

4∏

n=1

|hn(ηn)| dρ = (A.2) .
4∏

n=1

‖hn‖ (A.8)

using, in addition, (A). This proves (3.4).

In the proof of (3.5) we distinguish between the case l −m odd and the case l −m even.
First some more notation. For a (measurable) set A ⊂ R

4 let

I1(A) :=

∫

A

1

max(|a(η)|, 1)

4∏

n=1

|hn(ηn)|δ(η1 − η2 + η3 − η4) dη, (A.9)

I2(A) :=

∫∫

(s,η)∈[0,L]×A
|D(s)|&|a(η)|

1

|D(s)|

4∏

n=1

|hn(ηn)|δ(η1 − η2 + η3 − η4) dsdη. (A.10)

Furthermore, let Aτ
l,m := {η ∈ R

4| |ηl − ηm| ≥ τ}.
The case l−m odd: First note that by symmetry it is enough to consider the case (l, m) =

(1, 2). So assume that τ = dist(supp (h1), supp (h2)) > 0. As before, splitting the s-integral
in the definition (3.1) of K1 into the region {s ∈ [0, L]| |D(s)| . |a(η)|}, where oscillations
are important, and a region {s ∈ [0, L]| |D(s)| & |a(η)|}, where they are not, and using the
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bound from Corollary 2.9 on the former set we have

K1(h1, h2, h3, h4) .

∫

R4

1

max(|a(η)|, 1)

4∏

n=1

|hn(ηn)| dρ+
∫∫

(s,η)∈[0,L]×R
4

|D(s)|&|a(η)|

1

|D(s)|

4∏

n=1

|hn(ηn)| dρds

= I1(A
τ
1,2) + I2(A

τ
1,2) (A.11)

since h1(η1)h2(η2) = 0 if |η1 − η2| < τ . In the integral defining I2(A
τ
1,2) we have |D(s)| &

|a(η)| = 2|η1 − η2||η2 − η3| ≥ 2τ |η2 − η3|. Hence, using (A.1) with R = |D(s)|/τ for the
η-integration, we have

I2(A
τ
1,2) .

∫∫

(s,η)∈[0,L]×R
4

|η2−η3|.|D(s)|/τ

1

|D(s)|

4∏

n=1

|hn(ηn)|δ(η1 − η2 + η3 − η4) dηds .
1

τ

4∏

n=1

‖hn‖. (A.12)

To estimate I1(A
τ
1,2) we split Aτ

1,2 = B1 ∪B2 with

B1 := {η ∈ R
4 : |η1 − η2| ≥ τ and |η2 − η3| ≥ 1}

B2 := {η ∈ R
4 : |η1 − η2| ≥ τ and |η2 − η3| ≤ 1}.

Obviously, I1(A
τ
1,2) = I1(B1) + I1(B2) and, similarly as for the bound of (A.6), the Cauchy–

Schwarz inequality yields

I1(B1) =

∫

B1

1

max(|a(η)|, 1)

4∏

n=1

|hn(ηn)| dρ

.
( ∫

|η1−η2|≥τ
and |η2−η3|≥1

1

|η1 − η2|2|η2 − η3|2
|h1(η1)|2 dρ

)1/2(∫

R4

|h2(η2)|2|h2(η3)|2|h2(η4)|2 dρ
)1/2

. τ−1/2
4∏

n=1

‖hn‖

Since max(|a|, 1) ≥ |a|1/2, we also have

I1(B2) .

∫

B2

1

|η1 − η2|1/2|η2 − η3|1/2
4∏

n=1

|hn(ηn)| dρ

≤ τ−1/2

∫

B2

1

|η2 − η3|1/2
4∏

n=1

|hn(ηn)| dρ.
(A.13)
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Using Cauchy–Schwarz with respect to the measure δ(η1 − η2 + η3 − η4) dη1dη4, one sees
∫

R2

|h1(η1)||h4(η4)|δ(η1 − η2 + η3 − η4) dη1dη4

≤
(∫

R2

|h1(η1)|2δ(η1 − η2 + η3 − η4) dη1dη4

)1/2(∫

R2

|h4(η4)|2δ(η1 − η2 + η3 − η4) dη1dη4

)1/2

= ‖h1‖‖h4‖.
uniformly in (η2, η3) ∈ R

2. Hence
∫

B2

1

|η2 − η3|1/2
4∏

n=1

|hn(ηn) dρ

=

∫

|η2−η3|≤1

|h2(η2)||h3(η3)|
|η2 − η3|1/2

( ∫

R2

|h1(η1)||h4(η4)|δ(η1 − η2 + η3 − η4) dη1dη4

)
dη2dη3

≤ ‖h1‖‖h4‖
∫

|η2−η3|≤1

|h2(η2)||h3(η3)|
|η2 − η3|1/2

dη2dη3

≤ ‖h1‖‖h4‖
( ∫

|η2−η3|≤1

dη2dη3
|h2(η2)|2

|η2 − η3|1/2
)1/2( ∫

|η2−η3|≤1

dη2dη3
|h3(η3)|2

|η2 − η3|1/2
)1/2

. ‖h1‖‖h2‖‖h3‖‖h4‖
where we also used the Cauchy–Schwarz inequality with respect to the measure |η2−η3|1/2 dη2dη3
in the second inequality. Thus

I2 . τ−1/2
4∏

n=1

‖hn‖. (A.14)

The bounds (A.12) and (A.14) together prove the bound for K1. The bound for K2 follows
immediately from (A.14), since

K2(h1, h2, h3, h4) . I1(A
τ
1,2). (A.15)

Now we prove the case that l − m is even. By symmetry, it is enough to consider the
case (l, m) = (1, 3). So assume that τ = dist(supp (h1), supp (h3)) > 0. In this case we have
K1(h1, h2, h3, h4) . I1(A

τ
1,3) + I2(A

τ
1,3) and K

2(h1, h2, h3, h4) . I1(A
τ
1,3).

The triangle inequality yields Aτ
1,3 ⊂ A

τ/2
1,2 ∪Aτ/2

2,3 and the bounds (A.12) and (A.14) proven
in the case l −m odd now yield

I1(A
τ
1,3) ≤ I1(A

τ/2
1,2 ) + I1(A

τ/2
2,3 ) . τ−1/2

4∏

n=1

‖hn‖,

I2(A
τ
1,3) ≤ I1(A

τ/2
1,2 ) + I1(A

τ/2
2,3 ) . τ−1/2

4∏

n=1

‖hn‖.

This finishes the proof of Proposition 3.4.
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