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Abstract. We study the wave equation with potential utt −∆u + V u = 0 in two spatial dimen-

sions, with V a real-valued, decaying potential. With H = −∆+V , we study a variety of mapping

estimates of the solution operators, cos(t
√
H) and

sin(t
√
H)√

H
under the assumption that zero is a

regular point of the spectrum of H. We prove a dispersive estimate with a time decay rate of |t|−
1
2 ,

a polynomially weighted dispersive estimate which attains a faster decay rate of |t|−1(log |t|)−2

for |t| > 2. Finally, we prove dispersive estimates if zero is not a regular point of the spectrum of

H.

1. Introduction

In this paper we study the linear wave equation with a real-valued decaying potential in two

spatial dimensions,

utt −∆u+ V u = 0, u(0) = f, ∂tu(0) = g, (x, t) ∈ R2 × R.(1)

Formally, with H = −∆ + V , we represent the solution of this equation by

u(x, t) = cos(t
√
H)f(x) +

sin(t
√
H)√

H
g(x).(2)

This formulation is valid if, for example, f ∈ L2 and g ∈ Ḣ−1. In the free case, when V = 0, it

is known that if the inital data f and g lie in sufficiently regular Sobolev spaces we also have the

dispersive estimates

‖ cos(t
√
−∆)f‖∞ . |t|−1/2‖f‖Wk+1,1 ,(3) ∥∥∥∥ sin(t
√
−∆)√
−∆

g

∥∥∥∥
∞
. |t|−1/2‖g‖Wk,1 ,(4)

for k > 1
2 in dimension two, see [26, 3, 4]. In general, one must use Hardy or Besov spaces or BMO

to obtain the sharp k = n−1
2 smoothness bound in even dimensions. One can attain the bound

for Sobolev spaces in dimension three where one can use the divergence theorem, see [35]. More

generally, in odd spatial dimensions one can take advantage of the strong Huygens principle.
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In this paper, we extend these dispersive bounds to the perturbed equation, (1), when the initial

data (f, g) is sufficiently differentiable with relatively weak assumptions on the potential V . These,

along with the Hs bounds yield a class of Lp dispersive bounds, see Theorem 1.1 of [3].

Such dispersive estimates were first studied by Beals and Strauss in dimensions n ≥ 3 in [4]. In two

dimensions there is not much work on the W k,1 → L∞ dispersive estimates or ‘regularized’ L1 → L∞

type estimates, where negative powers of H are employed. High frequency estimates of this type

were studied by Moulin in [27]. In [23], Kopylova studied two dimensional local estimates, based on

polynomially weighted Hs spaces when zero energy is regular, in which a decay rate of t−1(log t)−2

is attained for large t. In the Hs setting, one can take advantage of conservation of energy, which is

unavailable for the global dispersive bounds. This matches the decay rate obtained by Murata for

the two dimensional Schrödinger equation in [28]. Dispersive bounds for the wave equation in three

dimensions have been studied, see [24, 5] for example. More is known about Strichartz estimates for

the wave equation, particularly in dimensions n ≥ 3 see for example [17, 6, 7, 16, 11, 5].

When we perturb the free wave equation with a potential, one needs to project away from the

eigenspaces. If we assume that |V (x)| . 〈x〉−β for some β > 2, it is well known, see [30], that

the spectrum of H is made of finitely many non-negative eigenvalues and the absolutely continuous

spectrum [0,∞). The negative eigenvalues cause exponential growth of the solutions due to the

action of the operators cos(t
√
E) and E−

1
2 sin(t

√
E) with

√
E ∈ iR. Accordingly, we first project

away from the eigenvalues with Pac, the projection onto the absolutely continuous spectrum.

Throughout the paper we use the notation a− := a− ε and a+ := a+ ε for some small, but fixed,

ε > 0. Our first main result is the dispersive bound

Theorem 1.1. If |V (x)| . 〈x〉−β for some β > 3 and if zero is a regular point of the spectrum of

H = −∆ + V , then

‖ cos(t
√
H)〈H〉− 3

4−Pac(H)f‖L1→L∞ . |t|−
1
2 ,∥∥∥∥ sin(t

√
H)√

H
〈H〉− 1

4−Pac(H)g

∥∥∥∥
L1→L∞

. |t|− 1
2 .

In addition, we prove a weighted version of this Theorem that attains a faster time decay rate.

Theorem 1.2. If |V (x)| . 〈x〉−β for some β > 3 and if zero is a regular point of the spectrum of

H = −∆ + V , then for t > 2

‖ cos(t
√
H)〈H〉− 3

4−Pac(H)f‖
L1, 1

2
+→L∞,−

1
2
− . t

−1(log t)−2,∥∥∥∥ sin(t
√
H)√

H
〈H〉− 1

4−Pac(H)g

∥∥∥∥
L1, 1

2
+→L∞,−

1
2
−
. t−1(log t)−2.

Here L1, 12+ := {f : R2 → C : ‖f〈·〉 12+‖1 < ∞} and L∞,−
1
2− is defined similarly. We note that

the bounds in Theorems 1.1 and 1.2 can be replaced by bounds withought negative powers of 〈H〉
which map W 2,1 → L∞ for the cosine operator and W 1,1 → L∞ for the sine operator (and respective



TIME DECAY ESTIMATES FOR THE WAVE EQUATION WITH POTENTIAL IN DIMENSION TWO 3

weighted Sobolev spaces for Theorem 1.2), see Remark 3.5 below. We note that the regularizing

powers of 〈H〉−α for α > 0 reflect the loss of derivatives of the initial data, and are only needed for

high energy. In the low energy estimates, we prove L1 → L∞ bounds.

A series of papers have considered such estimates involving ‘regularizing’ powers of H, mostly

with a high-energy cut-off and using semi-classical techniques. See [9, 27] for two dimensional results.

In higher dimensions see, for example, [36, 10].

In the case that zero is not regular, that is there are non-trivial bounded solutions to Hψ = 0,

one can study the boundedness of sine and cosine operators. The distributional solutions of this

equation have been characterized, see [20, 13], in terms of the Lp spaces. If ψ ∈ L∞ and ψ /∈ Lp for

any p < ∞ we call ψ an ‘s-wave’ resonance. If ψ ∈ Lp for all p > 2 but not in L2, we say ψ is a

‘p-wave’ resonance. Whereas, if ψ ∈ L2 there is an eigenvalue at zero. It is known that when zero

is not regular, in general, time decay is lost in the dispersive estimates. See, for example, [19, 15]

for three-dimensional and [13] for two-dimensional Schrödinger operators. In the two-dimensional

Schrödinger equation, it is shown that the ‘s-wave’ resonance is sufficiently mild as to not destroy

the dispersive time decay rate. We prove a similar characterization for the wave equation.

Theorem 1.3. Assume that |V (x)| . 〈x〉−β. If there is only an s-wave resonance at zero energy,

then for β > 4, for |t| > 1 we have

‖ cos(t
√
H)〈H〉− 3

4−Pac(H)f‖L1→L∞ . |t|−
1
2 ,∥∥∥∥ sin(t

√
H)√

H
〈H〉− 1

4−Pac(H)g

∥∥∥∥
L1→L∞

. |t|− 1
2 .

If there is a p-wave resonance or eigenvalue at zero, then for β > 6, there are time-dependent

operators Ft and Gt such that for |t| > 1,

‖ cos(t
√
H)[〈H〉− 3

4−Pac(H)− Ft]f‖L1→L∞ . |t|−
1
2 ,∥∥∥∥[ sin(t

√
H)√

H
〈H〉− 1

4−Pac(H)−Gt
]
g

∥∥∥∥
L1→L∞

. |t|− 1
2 .

with

sup
t
‖Ft‖L1→L∞ . 1, and ‖Gt‖L1→L∞ . |t|.

Estimates for the three-dimensional wave equation when there is a resonance at zero energy were

obtained by Krieger and Schlag in [24], and (with Nakanishi) extended to mixed space-time estimates

in [25]. In that work the authors were concerned with the focusing, energy critical non-linear wave

equation in three spatial dimensions, in which the dispersive evolution (after projecting away from

the resonance function) was needed. During the review period for this article, Erdoğan, Goldberg

the author proved dispersive estimates for the four-dimensional Schrödinger and wave equations

with resonances at zero energy, [12].
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The resolvent operator RV (z) := (−∆ + V − z)−1, is defined for z ∈ C which are not in the

spectrum of H. We define the limiting operators

R±V (λ2) := lim
ε→0+

(−∆ + V − (λ2 ± iε))−1.

Such operators are well defined on certain weighted L2 spaces due to Agmon’s limiting absorption

principle, see [2].

Using the Spectral theorem we can write

〈f(H)Pacg, h〉 =

∫ ∞
0

f(λ)〈E′ac(λ)g, h〉 dλ,

where the Stone formula yields that the absolutely continuous spectral measure is given by

〈E′ac(λ)g, h〉 =
1

2πi
〈[R+

V (λ)−R−V (λ)]g, h〉.

The key insight here is that the absolutely continuous spectral measure is the same as in the analysis

of the Schrödinger equation with potential. The fact that the spectral measure is the difference of the

resolvent operators is crucial to establishing dispersive bounds in the free case, and for low energy

(small λ) bounds we establish in Section 4. For low energy, the difference of the resolvents helps to

control the singularities of the resolvents as the spectral parameter λ → 0. We write the evolution

of the solution operator projection onto the absolutely continuous spectrum as

cos(t
√
H)Pacf(x) +

sin(t
√
H)√

H
Pacg(x) =

1

πi

∫ ∞
0

λ cos(tλ)
[
R+
V (λ2)−R−V (λ2)

]
f(x) dλ(5)

+
1

πi

∫ ∞
0

sin(tλ))
[
R+
V (λ2)−R−V (λ2)

]
g(x) dλ.

Where we made the change of variables λ 7→ λ2 for computational convience. The solution operators

in the wave equation lead to multiplication in the spectral parameter by the functions sine and cosine

instead of multiplication by eitλ
2

λ that arises in the Schrödinger evolution. Throughout this paper,

we will consider the case of t > 0, the case of t < 0 follows from minor modifications of our proofs.

The dispersive decay, in the sense of mappings between weighted L2 spaces or from L1 to L∞ is

well studied for the perturbed Schrödinger equation

i∂tu−∆u+ V u = 0, u(x, 0) = f(x).

In two spatial dimensions, Murata attained time-integrable estimates on weighted L2 spaces. This

time-decay rate was attained by Erdoğan and the author in a logarithmically weighted L1 to log-

arithmically weighted L∞ space in [14]. This paper proves theorems for the wave equation which

are analogous to those found in the work of Schlag in [31] and previous work of Erdoğan and the

author, [13, 14] studying the Schrödinger solution operator eitHPac in two spatial dimensions.

The paper is organized as follows: In Section 2 we develop expansions for the two-dimensional

free resolvent needed for our analysis. In Section 3 we establish the high-energy dispersive bound

for Theorem 1.1. In Section 4 we recall necessary resolvent expansions for small λ and establish the
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dispersive bound of Theorem 1.1 for low energy. In Section 5 we establish refinements of the bounds

and expansions of the previous sections needed to prove Theorem 1.2. Finally in Section 6 we show

how the low-energy evolution is affected by the presence of an eigenvalue and/or resonance at zero

energy, and prove Theorem 1.3.

2. The Free Resolvent

In this section we discuss the properties of the free resolvent, R±0 (λ2) = [−∆ − (λ2 ± i0)]−1, in

R2. We wish to understand the free resolvent in order to better understand the spectral measure in

(5). A similar discussion appears in [31, 13, 14].

To simplify the formulas, we use the notation

f = Õ(g)

to denote
dj

dλj
f = O

( dj
dλj

g
)
, j = 0, 1, 2, 3, ...

If the derivative bounds hold only for the first k derivatives we write f = Õk(g).

Recall that

R±0 (λ2)(x, y) = ± i
4
H±0 (λ|x− y|) = ± i

4
J0(λ|x− y|)− 1

4
Y0(λ|x− y|).(6)

Thus, we have

(7) R+
0 (λ2)(x, y)−R−0 (λ2)(x, y) =

i

2
J0(λ|x− y|).

From the series expansions for the Bessel functions, see [1], we have, as z → 0,

J0(z) = 1− 1

4
z2 + Õ4(z4),(8)

Y0(z) =
2

π
(log(z/2) + γ)J0(z) +

2

π

(
1

4
z2 + Õ4(z4)

)
=

2

π
log(z/2) +

2γ

π
+ Õ(z2 log(z)).(9)

For |z| > 1,

H±0 (z) = e±izω±(z), ω±(z) = Õ
(
(1 + |z|)− 1

2

)
.(10)

So that for |z| > 1

C(z) = eizω+(z) + e−izω−(z), ω±(z) = Õ
(
(1 + |z|)− 1

2

)
,(11)

for any C ∈ {J0, Y0} respectively with different ω± that satisfy the same bounds.

In particular,

R±0 (λ2)(x, y) = ± i
4
− γ

2π
− 1

2π
log(λ|x− y|/2) + Õ

(
λ2|x− y|2 log(λ|x− y|)

)
, λ|x− y| � 1.(12)

R±0 (λ2)(x, y) = e±iλ|x−y|ω±(λ|x− y|), λ|x− y| & 1.(13)
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3. High Energy

Here we show high energy, λ ≥ λ1 > 0 for some fixed λ1 > 0, estimates for the evolution of the

solution of (1) in (5). The exact value of λ1 > 0 is unimportant for the following analysis, it will be

determined by certain resolvent expansions used in the low energy regime, see Lemma 4.6 below.

Take a smooth cut-off function χ ∈ C∞((0,∞)) with χ(x) = 1 if x < 1
2 and χ(x) = 0 if x > 1.

Define χ̃ = 1− χ, and χ1(x) = χ(x/λ1) with χ̃1 = 1− χ1. For the high energy evolution, we prove

the following high energy version of Theorem 1.1.

Proposition 3.1. For fixed λ1 > 0, if |V (x)| . 〈x〉−2−, we have the bounds

‖ cos(t
√
H)H−

3
4−χ̃1(

√
H)‖L1→L∞ . |t|−

1
2 ,

‖ sin(t
√
H)H−

3
4−χ̃1(

√
H)‖L1→L∞ . |t|−

1
2 .

We define the cut-off χL(λ) = χ(λ/L). Due to the spectral respresentation, (5), the Proposition

follows if we prove the bound

sup
x,y∈R2

sup
L≥1

∣∣∣∣ ∫
R2

∫ ∞
0

eitλλ−
1
2−χ̃1(λ)χL(λ)[R+

V (λ2)−R−V (λ2)](x, y) dλ

∣∣∣∣ . |t|− 1
2 .(14)

We prove the estimates with eitλ, estimates for e−itλ and hence sin(tλ) and cos(tλ) follow similarly.

We note that such a bound is attained in [27] for λ1 large enough with the assumption that

sup
y∈R2

∫
R2

|V (z)|
|z − y| 12

dz ≤ C <∞.

As one needs more decay on the potential to understand the low energy evolution and we need the

bound to hold for any λ1 > 0, we provide the following proof which requires a slightly stronger

assumption on the potential.

We start with the resolvent expansion

R±V (λ2) = R±0 (λ2)−R±0 (λ2)V R±0 (λ2) +R±0 (λ2)V R±V (λ2)V R±0 (λ2).(15)

The first term is the free resolvent. In the high energy regime for the first term only, we need to use

the cancellation between ‘+’ and ‘-’ free resolvents, for the remaining terms the cancellation between

‘+’ and ‘-’ resolvents does not simplify the proofs and is not used.

Lemma 3.2. We have the bound

sup
x,y∈R2

sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλλ−
1
2−χ̃1(λ)χL(λ)[R+

0 (λ2)−R−0 (λ2)](x, y) dλ

∣∣∣∣ . t− 1
2 .

Proof. Using (7), we reduce the contribution of the first term in (15) to showing the bound

sup
x,y∈R2

sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλχ̃1(λ)χL(λ)λ−
1
2−J0(λ|x− y|) dλ

∣∣∣∣ . t− 1
2 .

Using (8) and (10) we write

J0(λ|x− y|) = ρ−(λ|x− y|) + eiλ|x−y|ω+(λ|x− y|) + e−iλ|x−y|ω−(λ|x− y|)
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with ρ−(z) = Õ(1) supported on [0, 12 ] and ω±(z) = Õ((1 + z)−1/2) supported on [ 14 ,∞).

We first consider the contribution of J0 when λ|x− y| & 1 we consider first the ‘-’ phase from the

expansion for J0 and bound the following integral∫ ∞
0

eitλχ̃1(λ)χL(λ)λ−
1
2−e−iλ|x−y|ω−(λ|x− y|) dλ.(16)

First we note that if t− |x− y| ≤ t/2 then t . |x− y| and we use the decay of ω− to see

|(16)| .
∫ ∞
1

λ−1−|x− y|− 1
2− dλ . |x− y|− 1

2− . t−
1
2−.

On the other hand, if t − |x − y| ≥ t/2, we can integrate by parts against the combined phase

eiλ(t−|x−y|) to see

|(16)| . 1

t− |x− y|

∫ ∞
0

d

dλ

(
χ̃1(λ)χL(λ)λ−

1
2−ω−(λ|x− y|)

)
dλ .

1

t

∫ ∞
1

λ−
3
2−

(1 + λ|x− y|) 1
2

dλ

.
1

t
|x− y|− 1

2

∫
λ&|x−y|−1

λ−2 dλ .
|x− y| 12

t
. t−

1
2 .

Where we used that λ & 1 in the second to last step and that |x− y| . t in the last inequality. For

the ‘+’ phase, the analysis follows from considering the cases of t+ |x− y| ≤ 2t and t+ |x− y| ≥ 2t

in place of the cases t− |x− y| ≥ t/2 and t− |x− y| ≤ t/2 considered for the negative phase.

For the contribution of ρ− we need to consider three cases. First, consider the case when t . |x−y|.
Then, using 1 . (λ|x− y|)−1 on the support of ρ− we have∫ ∞

0

eitλχ̃1(λ)χL(λ)λ−
1
2−χ{λ|x−y|.1} dλ .

1

|x− y| 12

∫ ∞
0

λ−1−χ̃1(λ) dλ .
1

|x− y|− 1
2

. t−
1
2 .

We now consider the second case in which t & |x− y|. The first subcase here is when t & 1. We

use the fact that | d
k

dλk
χ̃1(λ)|, | d

k

dλk
χ̃L(λ)| . λ−k to see∫ ∞

0

eitλχ̃1(λ)χL(λ)λ−
1
2−Õ(1) dλ =

1

it

∫ ∞
0

eitλ
d

dλ

(
χ̃1(λ)χL(λ)λ−

1
2−Õ(1)

)
dλ

.
1

t

∫ ∞
1

λ−
3
2− dλ . t−1 . t−

1
2 .

Finally, we need to consider the case in which |x− y| � t� 1. Then we break the integral up into

two pieces to bound with∫ t−1

0

eitλχ̃1(λ)χL(λ)λ−
1
2−Õ(1) dλ+

∫ ∞
t−1

eitλχ̃1(λ)χL(λ)λ−
1
2−Õ(1) dλ.

For the first integral we note that on the support of χ̃1(λ), we have λ−
1
2− . λ−

1
2 so,∣∣∣∣ ∫ t−1

0

eitλχ̃1(λ)χL(λ)λ−
1
2−Õ(1) dλ

∣∣∣∣ . ∫ t−1

0

λ−
1
2 dλ . t−

1
2

For the second integral, we integrate by parts once against the phase eitλ to bound with∫ ∞
t−1

eitλχ̃1(λ)χL(λ)λ−
1
2−Õ(1) dλ .

χ̃1(λ)χL(λ)λ−
1
2−

t

∣∣∣∣∞
t−1

+
1

t

∫ ∞
t−1

λ−
3
2− dλ . t−

1
2 .
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Again we use that that on the support of χ̃1(λ), we have λ−
1
2− . λ−

1
2 to get the t−

1
2 bound.

�

It is worth noting one can obtain this high energy estimate by considering an alternative definition

of the Bessel function to bound∫ ∞
0

eitλλ−
1
2−χ̃1(λ)χL(λ)

(∫
|ω|=1

eiλω·(x−y) dω

)
dλ.

The desired bounds follow by using standard facts on the Fourier transforms of densities on curved

manifolds, see [34] for example. We do not pursue this issue here, as much of our analysis requires

considering the free resolvent and the Bessel functions on different regimes according to the size of

their argument, recall (8), (9), (10), (12) and (13). This is due to the vastly different behavior of

the ‘low’, |z| � 1 and ‘high’, |z| & 1, portions of these functions.

For the second term in (15), we have

Lemma 3.3. If |V (x)| . 〈x〉−2−, then we have the bound

sup
x,y∈R2

sup
L≥1

∣∣∣∣ ∫
R2

∫ ∞
0

eitλλ−
1
2−χ̃1(λ)χL(λ)R±0 (λ2)(x, z)V (z)R±0 (λ2)(z, y) dλ dz

∣∣∣∣ . t− 1
2 .

Proof. We won’t make use of any cancellation between ‘±’ terms. Thus, we will only consider R−0 ,

and drop the ‘±’ signs. Using (6), (8), (9), and (10) we write

R0(λ2)(x, y) = e−iλ|x−y|ρ+(λ|x− y|) + ρ−(λ|x− y|),(17)

where ρ+ and ρ− are supported on the sets [1/4,∞) and [0, 1/2], respectively. Moreover, we have

the bounds

(18) ρ−(y) = Õ(1 + | log y|), ρ+(y) = Õ
(
(1 + |y|)−1/2

)
We now consider ∫ ∞

0

eitλλ−
1
2−χ̃1(λ)χL(λ)R−0 (λ2)(x, z)V (z)R−0 (λ2)(z, y) dλ.

We are considering the case of R−0 as the sign of t and the high energy phases do not match, which

requires a more delicate analysis. We note that

∣∣∂kλ[ρ+(λdj)
]∣∣ . dkj

(1 + λdj)k+1/2
, k = 0, 1, 2, ...,

∣∣∂kλ[ρ−(λdj)
]∣∣ . 1

λk
, k = 1, 2, ...

Define the function log−(z) = −(log z)χ{0<z<1}. Using the monotonicity of log− function, we also

obtain

χ̃1(λ)
∣∣ρ−(λdj)

∣∣ . χ̃1(λ)(1 + | log(λdj)|)χ{0<λdj≤1/2} . χ̃(λ)(1 + log−(λdj)) . 1 + log−(dj).
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Finally, noting that (χ̃1)′ and χ′L are supported on the set {λ ≈ 1}, we have

|∂kλχ̃1(λ)|, |∂kλχL(λ)| . λ−k.(19)

For notational convience, let d1 := |x−z| and d2 := |z−y|. First consider the ‘low-low’ interaction,

that is when each resolvent contributes ρ−. We consider two cases, first if t ≥
√
d1d2, then∫ ∞

0

eitλχ̃1(λ)χL(λ)λ−
1
2−ρ−(λd1)ρ−(λd2) dλ

.
1

t

∫ ∞
0

∣∣∣∣ ddλ[χ̃1(λ)χL(λ)λ−
1
2−ρ−(λd1)ρ−(λd2)

]∣∣∣∣ dλ
.

(1 + log− d1)(1 + log− d2)

t

∫ ∞
1

1

λ
3
2+

dλ .
(1 + log− d1)(1 + log− d2)

t
1
2 d

1
4
1 d

1
4
2

.

On the other hand, if t ≤
√
d1d2 we don’t integrate by parts and instead use the support conditions

on ρ− to see∫ ∞
0

eitλχ̃1(λ)χL(λ)λ−
1
2−ρ−(λd1)ρ−(λd2) dλ .

∫ ∞
1

λ−
1
2−

(λ
√
d1d2)

dλ .
1

t
1
2

1

d
1
4
1 d

1
4
2

.(20)

Next we consider the ‘low-high’ interaction. That is, we have a contribution from one ρ+ and one

ρ−. Accordingly, we need to bound integrals of the form∫ ∞
0

eitλχ̃1(λ)λ−
1
2−e−iλd1ρ+(λd1)ρ−(λd2) dλ(21)

Due to the a-priori λ decay of ρ+, (10), we can take L =∞ and remove the cut-off from our analysis.

We need to consider two cases, depending on the relative size of t and the phase d1. In the first

case, we consider t− d1 ≥ t
2 . In this case we can safely integrate by parts against eiλ(t−d1).

|(21)| . 1

t− d1

∫ ∞
0

∣∣∣∣ ddλ(χ̃1(λ)λ−
1
2−ρ+(λd1)ρ−(λd2)

)∣∣∣∣ dλ
.

1

t

∫ ∞
1

[
1 + log− d2

λ
3
2+(1 + λd1)

1
2

+
d1(1 + log− d2)

λ
1
2+(1 + λd1)

3
2

]
dλ

.
1 + log− d2

t

∫ ∞
1

λ−
3
2− dλ .

1 + log− d2
t

.
1 + log− d2

t
1
2 d

1
2
1

Here we used that t−1 . d−11 in the last inequality.

The second case is when t − d1 ≤ t
2 . In this case we won’t integrate by parts, but use that

d−11 . t−1.

|(21)| .
∫ ∞
1

λ−
1
2−(1 + log− d2)

(1 + λd1)
1
2

dλ .
1 + log− d2

d
1
2
1

∫ ∞
1

λ−1− dλ .
1 + log− d2

t
1
2

.

Note that it is precisely this case that constrains us to a t−
1
2 time decay rate in the wave equation

for a non-weighted L∞ bound.
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For the ‘high-high’ interaction, we need to bound∫ ∞
0

eitλχ̃1(λ)λ−
1
2−e−iλ(d1+d2)ρ+(λd1)ρ+(λd2) dλ.(22)

We first consider the case when t− (d1 + d2) ≤ t
2 , in which case (d1 + d2) ≥ t

2 . Then

|(22)| . 1√
d1d2

∫ ∞
1

λ−
3
2− dλ .

1√
d1d2

.
1

t
1
2

√
min(d1, d2)

Where we used that (d1 + d2) ≥ t
2 gives us that max(d1, d2) & t.

The second case is when t− (d1 + d2) ≥ t
2 , in which we case we don’t integrate by parts once but

use d1, d2 . t and the asymptotics of ρ+. Accordingly we bound

1√
d1d2

∫ ∞
0

χ̃1(λ)λ−
3
2−ρ+(λd1)ρ+(λd2) dλ .

1√
d1d2

∫ ∞
1

λ−
3
2− dλ .

1

t
1
2

√
min(d1, d2)

The case when R+
0 appears and the exponentials have a positive phase follows as in the case analysis

above by considering the size of t+ d1 or t+ d1 + d2 compared to 2t.

Finally, we close the argument by noting that

sup
x,y

∣∣∣∣ ∫
R2

V (z)

(
1 +

(1 + log− |z − y|)(1 + log− |x− z|)
|x− z| 14 |z − y| 14

+
1 + log− |z − y|
|x− z| 12

)
dz

∣∣∣∣ . 1

provided that |V (z)| . 〈z〉−2−.

�

To control the remainder of the born series we employ the limiting absorption principle of Agmon,

[2]. For λ > λ1 > 0

‖R±0 (λ2)‖L2,σ(R2)→L2,−σ(R2) . λ
−1+.(23)

From the limiting absorption principle, we can deduce bounds for the derivatives by considering the

respresentation for the free resolvent in (17). Specifically, we have

‖R±V (λ2)‖L2,σ(R2)→L2,−σ(R2) . λ
−1+,(24)

sup
λ>λ1

‖∂kλR±V (λ2)‖L2,σ(R2)→L2,−σ(R2) . 1,(25)

which is valid for σ > 1
2 + k. The bounds for the derivatives are valid for the free resolvents as well.

The proof of these estimates follows as in Proposition 9 in [18] along with the discussion following

it. The bounds for the perturbed resolvent relies on the resolvent identity

R±V (λ2) = (I +R±0 (λ2)V )−1R±0 (λ2)

and the absence of embedded eigenvalues in the continuous spectrum, which is guaranteed by Kato’s

Theorem, see Section XIII.8 of [30].
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Using the representation (18), we note the following bounds on the free resolvent which are valid

on λ > λ1 > 0,

|∂kλR±0 (λ2)(x, y)| . |x− y|k
 | log(λ|x− y|)| 0 < λ|x− y| < 1

2

(λ|x− y|)− 1
2 λ|x− y| & 1

. λ−
1
2 |x− y|k− 1

2 .(26)

Thus, for σ > 1
2 + k,

‖∂kλR±0 (λ2)(x, y)〈y〉−σ‖L2
y
. λ−

1
2

[ ∫
R2

|x− y|2k−1

〈y〉2σ
dy
] 1

2

. λ−
1
2 〈x〉max(0,k− 1

2 ).(27)

To avoid polynomial weights in x or y, we take a bit more care with the leading and lagging free

resolvents. We use the following estimates on the pieces of the free resolvent in (17). Noting that

for λ & 1,

|∂kλρ−(λ)(λr)| . (1 + λr)−
1
2

 (1 + log− r) k = 0

λ−1 k = 1
(28)

|∂kλρ+(λ)(λr)| . λ−k(1 + λr)−
1
2 , k = 0, 1.(29)

The (1 + λr)−
1
2 in the first bound follows from the support conditions on ρ−. So that for σ > k+ 1

2

and k = 0, 1 we have the weighted L2 bounds

‖∂kλρ±(λ|x− y|)‖L2,σ
y
. λ−k−

1
2 .(30)

Once again, we estimate the R+
V and R−V terms separately and omit the ‘±’ signs.

Lemma 3.4. If |V (x)| . 〈x〉−2− we have the bound (14) as

sup
x,y∈R2

sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλλ−
1
2− E(λ)(x, y) dλ

∣∣∣∣ . t− 1
2(31)

where

E(λ)(x, y) = χ̃1(λ)χL(λ)
〈
V R±V (λ2)V R±0 (λ2)(·, x), R±0 (λ2)(·, y)

〉
.

Proof. Using (27), one can see that

|(31)| .
∫ ∞
0

χ̃1(λ)λ−
1
2−‖R0‖

L2,− 1
2
−‖V ‖L2,− 1

2
−→L2, 1

2
+‖RV ‖L2, 1

2
+→L2,− 1

2
−

× ‖V ‖
L2,− 1

2
−→L2, 1

2
+‖R0‖

L2,− 1
2
− dλ .

∫ ∞
0

χ̃1(λ)λ−
3
2− dλ . 1.

Again this justifies taking L =∞ in the cut-off χL. To establish bounds with time decay, we again

need to distinguish cases based on whether the leading and lagging resolvents contribute ρ− or ρ+

and the size of t relative to |x− z|, and/or |y− z|. The analysis is essentially identical to the second

term of the Born Series, but here we use weighted L2 bounds. For example, we can conclude the

bound for the term analogous to (22) by noting that

‖1 + log− |x− ·|‖L2,−1−‖V ‖
L2,−1−→L2, 1

2
+‖R±V ‖L2, 1

2
+→L2,− 1

2
−‖V ‖L2,− 1

2
−→L2, 1

2
+‖|y − ·|−

1
2 ‖
L2,− 1

2
−
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is bounded uniformly in x and y under the assumptions on the potential.

We need only make a few small adjustments. We note that, when integrating by parts, if the

derivative acts on the resolvent R±V (λ2) in the case when only ρ−’s are contributing we must account

for the case when the derivative acts on the perturbed resolvent,∫ ∞
0

χ̃1(λ)λ−
1
2−ρ−(λd1)ρ−(λd2)∂λR

±
V (λ2) dλ

.
1

d
1
4
1 d

1
4
2

∫ ∞
0

χ̃1(λ)λ−1−ρ−(λd1)ρ−(λd2)∂λR
±
V (λ2) dλ

by using the support conditions that λdj . 1. Then, using (26) on can see ‖r− 1
4 ρ−(λr)‖L2,σ . 1 for

σ > 1
2 .

This argument requires that |V (x)| . 〈x〉−2−. One can see that the requirement on the decay rate

of the potential arises when, for instance, the λ derivative act on one of the ρ±’s, this differentiated

object is in L2,− 3
2− by (30). The potential then needs to map L2,− 3

2− → L2, 12+ for the application of

the limiting absorption principle for RV . On the other hand, if the derivative acts on the perturbed

resolvent, ∂λRV maps L2, 32+ → L2,− 3
2− by (24), and V must map L2,− 3

2− to L2, 12+.

�

We can now prove the high energy bound.

Proof of Proposition 3.1. The statement follows from the spectral representation (14), and Lem-

mas 3.3 and 3.4 to control each term in the Born series expansion (15).

�

Remark 3.5. We note that one can prove estimates without the ‘regularizing’ powers of H by

directly appealing to differentiability of the initial data. That is, one can show

sup
x∈R2

sup
L≥1

∣∣∣∣ ∫
R2

∫ ∞
0

eitλλχ̃1(λ)χL(λ)[R+
V (λ2)−R−V (λ2)](x, y)f(y) dλ dy

∣∣∣∣ . |t|− 1
2 ‖f‖W 2,1

sup
x∈R2

sup
L≥1

∣∣∣∣ ∫
R2

∫ ∞
0

eitλχ̃1(λ)χL(λ)[R+
V (λ2)−R−V (λ2)](x, y)f(y) dλ dy

∣∣∣∣ . |t|− 1
2 ‖f‖W 1,1

To do this, one can employ an integration by parts in the y spatial variable according to∫
R2

e−iλ|z−y|ρ+(λ|z − y|)f(y) dy =
i

λ

∫
R2

e−iλ|z−y|∇y ·
[
ρ+(λ|z − y|)f(y)

y − z
|y − z|

]
dy

= − 1

λ2

∫
R2

e−iλ|z−y|∇y ·
{
∇y ·

[
ρ+(λ|z − y|)f(y)

y − z
|y − z|

] y − z
|y − z|

}
dy.

to gain λ decay to ensure integrability as λ → ∞ for the ‘high-high’ interactions. One must also

iterate the resolvent identity to form a longer Born series expansion than used in (15), and use sim-

ilar (but modified) techniques as we used above. This method, however, misses the sharp smoothness

requirement by 1
2 of a derivative instead of the ε loss presented in this section.
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4. Low Energy

To analyze the evolution of (2) on low energy, we must utilize different expansions for the resolvent.

The low energy contribution to Theorem 1.1 can again be reduced to an integral bound due to (5).

Proposition 4.1. If |V (x)| . 〈x〉−3− and if zero is a regular point of the spectrum of H = −∆+V ,

we have the bound

sup
x,y∈R2

∣∣∣∣ ∫ ∞
0

(sin(tλ) + λ cos(tλ))χ1(λ)[R+
V (λ)(x, y)−R−V (λ)(x, y)] dλ

∣∣∣∣ . t− 1
2 .

First we state the needed resolvent expansions and then control their contribution before proving

the dispersive bound.

4.1. Low energy Resolvent expansions. Let U(x) = 1 if V (x) ≥ 0 and U(x) = −1 if V (x) < 0,

and let v = |V |1/2. We have V = Uv2. We use the symmetric resolvent identity, valid for =λ > 0:

(32) R±V (λ2) = R±0 (λ2)−R±0 (λ2)vM±(λ)−1vR±0 (λ2),

where M±(λ) = U+vR±0 (λ2)v. The key issue studied in [20] and used in [31, 13, 14] in the resolvent

expansions is the invertibility of the operator M±(λ) for small λ under various spectral assumptions

at zero. For the sake of brevity, we use the expansions of [31, 13, 14] as needed and omit the proofs.

To understand the operator M±(λ) we define the following (see (9)),

G0f(x) = − 1

2π

∫
R2

log |x− y|f(y) dy = (−∆)−1f(x),(33)

g±(λ) := ‖V ‖1
(
± i

4
− 1

2π
log(λ/2)− γ

2π

)
.(34)

We consider more complicated expansions for M±(λ) in Sections 5 and 6.

Our first expansion is a modification of Lemma 5 in [31] which is Lemma 1 in [14].

Lemma 4.2. We have the following expansion for the kernel of the free resolvent

R±0 (λ2)(x, y) =
1

‖V ‖1
g±(λ) +G0(x, y) + E±0 (λ)(x, y).

Here G0(x, y) is the kernel of the operator G0 in (33), g±(λ) is as in (34), and E±0 satisfies the

bounds

|E±0 | . λ
1
2 |x− y| 12 , |∂λE±0 | . λ−

1
2 |x− y| 12 , |∂2λE±0 | . λ−

1
2 |x− y| 32 .

We note that the expansion for the free resolvent we develop here appears to depend on the

potential V through the factor of ‖V ‖1 that appears in the functions g±(λ). We include this factor

here to simplify certain operators later on and note that our goal is to develop an expansion for the

operators M±(λ) = U + vR±0 (λ2)v which do explicitly depend on the potential.

This expansion can be interpreted as follows, the first term g±(λ) contains all of the singularities

in λ, the second term is the integral kernel of the Green’s function for −∆ and the remaining term
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is an error term which is small in λ. Unlike in higher dimensional cases, we cannot simply expand

the free resolvent as a small λ perturbation of the integral kernel operator −(∆)−1(x, y) due to the

logarithmic behavior of g±(λ).

We employ this notation to match with that of previous works, see [31, 13, 14], in the context

of the Schrödinger equation. The error terms in the expansions are not related to and should not

be confused with the spectral family E′ac in the spectral theorem. We note that the bound on the

second derivative of the error term is not used here, but is needed to consider weighted estimates in

Section 5.

Lemma 4.3. For λ > 0 define M±(λ) := U+vR±0 (λ2)v. Let P = v〈·, v〉‖V ‖−11 denote the orthogonal

projection onto v. Then

M±(λ) = g±(λ)P + T + E±1 (λ).

Here T = U+vG0v where G0 is an integral operator defined in (33). Further, the error term satisfies

the bound ∥∥ sup
0<λ<λ1

λ−
1
2 |E±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±1 (λ)|

∥∥
HS
. 1,

provided that v(x) . 〈x〉− 3
2−.

Proof. This follows from Lemma 4.2 the definition of the operators

M±(λ)−1 = U + vR±0 (λ2)v

�

We recall the following definition from [31] and [13].

Definition 4.4. We say an operator T : L2(R2)→ L2(R2) with kernel T (·, ·) is absolutely bounded

if the operator with kernel |T (·, ·)| is bounded from L2(R2) to L2(R2).

It is worth noting that finite rank operators and Hilbert-Schmidt operators are absolutely

bounded. Also recall the following definition from [20], also see [31, 13].

Definition 4.5. Let Q := 1 − P . We say zero is a regular point of the spectrum of H = −∆ + V

provided QTQ = Q(U + vG0v)Q is invertible on QL2(R2).

(See Definition 6.1 in Section 6 below for a more complete description of regularity at zero.)

In Lemma 8 of [31], it was proved that if zero is regular, then the operator D0 := (QTQ)−1 is

absolutely bounded on QL2. Below, we discuss the invertibility of M±(λ) = U + vR±0 (λ2)v, for

small λ. This following lemma was proved in Lemma 8 of [31] by employing an abstract Feshbach

inversion formula.
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Lemma 4.6. Suppose that zero is a regular point of the spectrum of H = −∆ + V . Then for

sufficiently small λ1 > 0, the operators M±(λ) are invertible for all 0 < λ < λ1 as bounded operators

on L2(R2). Further, one has

M±(λ)−1 = h±(λ)−1S +QD0Q+ E±(λ),(35)

Here h±(λ) = g±(λ) + c (with c ∈ R), and

(36) S =

 P −PTQD0Q

−QD0QTP QD0QTPTQD0Q


is a finite-rank operator with real-valued kernel. Further, the error term satisfies the bounds∥∥ sup

0<λ<λ1

λ−
1
2 |E±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±(λ)|

∥∥
HS
. 1,

provided that v(x) . 〈x〉− 3
2−.

Remark. Under the conditions of Theorem 1.1, the resolvent identity

(37) R±V (λ2) = R±0 (λ2)−R±0 (λ2)vM±(λ)−1vR±0 (λ2)

= R±0 (λ2)−R±0 (λ2)
vSv

h±(λ)
R±0 (λ2)−R±0 (λ2)vQD0QvR

±
0 (λ2)−R±0 (λ2)vE±(λ)vR±0 (λ2)

holds as an operator identity between the spaces L2, 12+(R2) and L2,− 1
2−(R2), as in the limiting

absorption principle, [2].

4.2. The low energy dispersive bound. We now consider the evolution for low energy, (5),

when 0 < λ < λ1. In contrast with the high energy treatment in Section 3 we do not need any

differentiability of initial data nor any ‘regularizing’ powers of H. In fact, for small λ, we prove an

L1 → L∞ dispersive bound. We use previous work on dispersive bounds for the two-dimensional

Schrödinger equation, using results of [31, 13, 14] as needed.

First we bound the free resolvent term contribution to (37),

Lemma 4.7. We have the bound

sup
x,y∈R2

∣∣∣∣ ∫ ∞
0

eitλχ1(λ)[R+
0 (λ)(x, y)−R−0 (λ)(x, y)] dλ

∣∣∣∣ . t− 1
2 .

Proof. Since R+
0 (λ)(x, y) − R−0 (λ)(x, y) = i

2J0(λ|x − y|). We consider the contribution of J0 when

λ|x− y| . 1, in which case J0(λ|x− y|) = 1 + Õ(λ2|x− y|2), see (8). In this case we note that the

boundedness of the integral is clear, to obtain the desired t−1/2 bound we interpolate with∣∣∣∣ ∫ ∞
0

eitλχ1(λ)(1 + |x− y|2Õ(λ2)) dλ

∣∣∣∣ . 1

t

∫ ∞
0

χ′1(λ) + λ|x− y|2χ{λ.|x−y|−1} dλ . t
−1.

For the piece supported on λ|x− y| & 1, we note that for the negative phase piece we have to bound∫ ∞
0

eitλχ1(λ)e−iλ|x−y|ω−(λ|x− y|) dλ.
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As ω− . 1, the integral is clearly bounded. To attain time decay, we again split into cases. First, if

t− |x− y| ≥ t
2 (or in the case of the ‘+’ phase) we integrate by parts once to bound with

1

t

∫
λ&|x−y|−1

|x− y|− 1
2

λ
3
2

dλ . t−1.

On the other hand if t− |x− y| ≤ t
2 we note that |x− y| & t and we can bound this contribution by

1

|x− y| 12

∫ 1

0

λ−
1
2 dλ . t−

1
2

as desired. �

We now consider the contribution of the operator QD0Q in (37).

Proposition 4.8. We have the bound

(38) sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

eitλχ1(λ)(1 + λ)v(x1)QD0Q(x1, y1)v(y1)

[
R+

0 (λ2)(x, x1)R+
0 (λ2)(y1, y)−R−0 (λ2)(x, x1)R−0 (λ2)(y1, y)

]
dλ dx1 dy1

∣∣∣∣ . t− 1
2 .

Proof. We can reduce the contribution to that when there is a single J0 and a single Y0 due to the

difference of the ‘+’ and ‘-’ terms in (5) and

R+
0 (λ2)(x, x1)R+

0 (λ2)(y, y1)−R−0 (λ2)(x, x1)R−0 (λ2)(y, y1)

= − i
8

(
Y0(λ|x− x1|)J0(λ|y − y1|) + J0(λ|x− x1|)Y0(λ|y − y1|)

)
.

This is a beneficial whenever at least one of the Bessel functions is supported on ‘low’ energy. For

‘low-low’ interactions, that is when the integral in (38) has cut-offs χ(λ|x − x1|) and χ(λ|y1 − y|),
we note that in the two-dimensional Schrödinger equation, as in [31], one wishes to control integrals

of the form ∫ ∞
0

eitλ
2

λχ1(λ)E(λ) dλ

To this end, one integrates by parts once against the imaginary Gaussian to bound with

1

t

∫ ∞
0

∣∣∣∣ ddλ
(
χ1(λ)E(λ)

)∣∣∣∣ dλ
Much of the work is involved in finding a uniform bound for this resulting integral. In our case, we

wish to bound integrals of the form∫ ∞
0

eitλ(1 + λ)χ1(λ)E(λ) dλ

Integrating by parts once, we are left to bound

1

t

∫ ∞
0

|χ1(λ)E(λ)|+
∣∣∣∣ ddλ

(
χ1(λ)E(λ)

)∣∣∣∣ dλ . 1

t

∫ ∞
0

∣∣∣∣ ddλ
(
χ1(λ)E(λ)

)∣∣∣∣ dλ
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The last inequality follows from (8) and (9). Defining

k(x, x1) := 1 + log+ |x1|+ log− |x− x1|,

with log+ y = χ{y>1} log y and log− y = −χ{0<y<1} log y. The dispersive bound for Schrödinger, see

Lemma 13 in [31], which proved the bound

(39)

∣∣∣∣ ∫ ∞
0

eitλ
2

λχ1(λ)Y0(λ|x− x1|)χ(λ|x− x1|)v(x1)QD0Q(x1, y1)

v(y1)J0(λ|y1 − y|)χ(λ|x− x1|) dλ
∣∣∣∣ . k(x, x1)

t
,

implies the bound for the wave equation. The desired bound of t−
1
2 follows from a simple interpola-

tion with the boundedness in time of the integral. To show this, we use the orthogonality relation,

Qv = vQ = 0 to control the logarithmic singularity of Y0. Specifically we note that we can replace

Y0(λ|x− x1|)χ(λ|x− x1|) in (38) with

F (λ, x, x1) = Y0(λ|x− x1|)χ(λ|x− x1|)−
2

π
χ(λ(1 + |x|)) log(λ(1 + |x|)).(40)

Noting Lemma 3.3 of [13] (which arose from the argument in [31]) we have the bounds on F

|F (λ, x, x1)| . k(x, x1), |∂λF (λ, x, x1)| . 1

λ
.(41)

The boundedness follows from the bounds on F and (8).∫ ∞
0

|χ1(λ)F (λ, x, x1)J0(λ|y − y1|)χ(λ|y − y1|)| dλ . k(x, x1)

∫ 1

0

dλ . k(x, x1).

Thus we can conclude that

(42)

∣∣∣∣ ∫ ∞
0

eitλχ1(λ)Y0(λ|x− x1|)χ(λ|x− x1|)v(x1)QD0Q(x1, y1)

v(y1)J0(λ|y1 − y|)χ(λ|x− x1|) dλ
∣∣∣∣ . k(x, x1)

t

as desired.

Here we’ll consider the integrals from the sine operator, as they are larger in the small λ regime.

Consider the ‘high-low’ interaction terms,∫ ∞
0

eitλχ1(λ)J0(λd1)χ̃(λd1)Y0(λd2)χ(λd2) dλ =

∫ ∞
0

eitλχ1(λ)e−iλd1ρ+(λd1)F (λ, y, y1) dλ.

Consider the case when t− d1 ≥ t/2, here we can safely integrate by parts to bound

1

t− d1

∫ ∞
0

∣∣∣∣ ddλ(χ1(λ)ρ+(λd1)F (λ, y, y1)
)∣∣∣∣ dλ . k(y, y1)

t

∫ 1

0

λ−
3
2 χ̃(λd1)

d
1
2
1

dλ.

We note that the support condition implies that λd1 & 1, so we can bound by

k(y, y1)d
1
2
1

t

∫ 1

0

λ−
1
2 dλ .

k(y, y1)

t
1
2

,

where we used that d1 . t in the last step.
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If t− d1 ≤ t
2 then d−11 . t−1 and we need to bound an integral of the form∫ 1

0

F (λ, y, y1)

(1 + λd1)
1
2

dλ .
∫ 1

0

k(y, y1)

d
1
2
1 λ

1
2

dλ .
k(y, y1)

t
1
2

.

The case where J0(λd1) is supported on small energy is bounded in the same way as

|J0(λd1)χ(λd1)| . 1 . k(x, x1).

We now consider the ‘high-high’ terms. Here we do not take advantage of the cancellation between

‘+’ and ‘-’ resolvents, but instead bound the contribution of the R+
0 R

+
0 and R−0 R

−
0 terms individually.

For the contribution of R−0 R
−
0 , using (10), we need to bound an integral of the form∫ ∞
0

eitλχ1(λ)e−iλ(d1+d2)ρ+(λd1)ρ+(λd2) dλ

In the case that t− (d1 + d2) ≥ t
2 we integrate by parts to bound integrals of the form

1

t

∫
λ&d1

d1

(1 + λd1)
3
2 (1 + λd2)

1
2

dλ .
1

t

1

d
1
2
1 d

1
2
2

∫
λ&d1

1

λ2
dλ .

1

t

d
1
2
1

d
1
2
2

.
1

t
1
2

1

d
1
2
2

Where we used that t & d1, d2 in the last line. There is, of course, a similar term to consider with

d1 and d2 switched.

On the other hand, if t− (d1 + d2) ≤ t
2 we have that t . max(d1, d2) and we need to control an

integral of the form ∫ 1

0

1

(1 + λd1)
1
2 (1 + λd2)

1
2

dλ .
1

t
1
2

∫ 1

0

λ−
1
2 dλ .

1

t
1
2

.

This follows from the bound t . max(d1, d2) since

1

(1 + λd1)
1
2 (1 + λd2)

1
2

.
1

λ
1
2 max(d

1
2
1 , d

1
2
2 )
.

1

t
1
2λ

1
2

.

We again note that the case of the positive phase, R+
0 R

+
0 follows implicitly from these arguments

with 2t replacing t
2 in the bounds for the two different cases analyzed when a ‘high’ term is involved

in the interaction. We close the argument by noting that

sup
x,y∈R2

∫
R4

k(x, x1)v(x1)|QD0Q|(x1, y1)v(y1)
1

|y1 − y|
1
2

dx1 dy1

. sup
x,y∈R2

‖k(x, ·)v(·)‖L2‖|QD0Q|‖L2→L2

∥∥v(·)(1 + | · −y|− 1
2 )
∥∥
L2 . 1.

�

We now turn to the contribution of the operator S in (37).

Lemma 4.9. We have the bound

(43)

∣∣∣∣ ∫
R4

∫ ∞
0

eitλχ1(λ)

(
R+

0 (λ2)(x, x1)v(x1)S(x1, y1)v(y1)R+
0 (λ2)(y1, y)

h+(λ)

− R−0 (λ2)(x, x1)v(x1)S(x1, y1)v(y1)R−0 (λ2)(y1, y)

h−(λ)

)
dλ dx1 dy1

∣∣∣∣ . t− 1
2
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uniformly in x and y.

Proof. The ‘low-low’ interaction is bounded using Lemma 17 of [31] and the discussion at the start

of Proposition 4.8. For the other terms we do not use the difference of ‘+’ and ‘-’ terms but estimate

them individually. We note the bound

χ1(λ)χ(λ|x− x1|) log(λ|x− x1|) . (1 + | log λ|)(1 + log− |x− x1|).(44)

This bound can be seen by considering the cases of |x−x1| < 1 and |x−x1| > 1 separately. Combining

the above bound along with the fact that on the support of the integrals we have |∂kλh
−1
± (λ)| .

λ−k| log λ|−1 for k = 0, 1 which allows us to run through the same argument used for QD0Q. As

usual we consider the more delicate case when R−0 (λ2) is involved. We first consider the ‘high-low’

interaction in which we wish to control∫ ∞
0

eitλχ1(λ)e−iλd1ρ+(λd1)
ρ−(λd2)

h(λ)
dλ

In the first case, when t−d1 ≥ t
2 . We first note that the integral above is bounded by k(y, y1), since∫ ∞

0

eitλχ1(λ)e−iλd1ρ+(λd1)
ρ−(λd2)

h(λ)
dλ .

∫ λ1

0

(1 + | log λ|)(1 + log− |x− x1|)
|h−(λ)|

dλ

. k(y, y1)

∫ λ1

0

| log λ|+ | log λ|−1 dλ . k(y, y1).

We can interpolate between this and the bound obtained by integrating by parts against the combined

phase eiλ(t−d1) and use that (t− d1)−1 . t−1.

1

t− d1

∫ ∞
0

∣∣∣∣ ddλ
(
ρ+(λd1)ρ−(λd2)

h(λ)

)∣∣∣∣ dλ . k(y, y1)

t

∫
λ&d−1

1

d
− 1

2
1 λ−

3
2 dλ .

k(y, y1)

t
.

In the other case when t− d1 ≤ t
2 , we have t . d1, we use the decay of ρ+ to bound by∫ ∞

0

∣∣∣∣χ1(λ)
(1 + | log λ|)k(y, y1)

λ
1
2 d

1
2
1

∣∣∣∣ dλ . k(y, y1)

t
1
2

∫ λ1

0

1 + | log λ|
λ

1
2

dλ .
k(y, y1)

t
1
2

.

The ‘high-high’ interaction is handled similarly by considering the size of t− (d1 + d2) compared to

t
2 as in the ‘high-high’ interactions considered in Proposition 4.8. As in the previous proofs, when

R+
0 (λ2) is involved one needs only do the case analysis by comparing the size t + d1 or t + d1 + d2

with 2t.

�

Finally we turn to the error term, E±(λ) in (37). In this case, we note that all the functions of

λ and their derivatives are smaller than those encountered in the QD0Q and/or S terms.

Lemma 4.10. We have the bound

sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

eitλχ1(λ)R±0 (λ2)(x, x1)v(x1)E±(λ)(x1, y1)v(y1)R±0 (λ2)(y1, y) dλ dx1 dy1

∣∣∣∣ . t− 1
2 .
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Proof. We provide a brief outline of the proof the convience of the reader. We again reduce the

analysis to a series of cases, ‘low-low’, ’high-low’ and ’high-high’ as in the proof of Proposition 4.8.

Here, we use the vanishing of the error term at λ = 0 of the error term, see Lemma 4.6, allows us to

control the logarithmic singularities of the resolvent. We cannot utilize the orthogonality relations

we used for QD0Q or the difference of ‘+’ and ‘-’ terms, though the smallness of E±(λ) more than

compensates for this loss.

We provide a sketch of how one controls the ‘high-low’ interaction for the convience of the reader.

That is, we wish to control integrals of the form∫ ∞
0

eitλχ1(λ)e−iλd1ρ+(λd1)E±(λ)ρ−(λd2) dλ.

Using (44) it is easy to see the above integral is bounded by (1 + log− d2). That is we bound with

sup
0<λ<λ1

∣∣λ− 1
2E±(λ)

∣∣ ∫ λ1

0

|λ 1
2 ρ+(λd1)ρ−(λd2)| dλ . (1 + log− d2) sup

0<λ<λ1

∣∣λ− 1
2E±(λ)

∣∣.
By Lemma 4.6, the error term defines a bounded operator on L2.

As usual, for the time decay we have two cases to consider. If t − d1 ≥ t
2 we integrate by parts

and note that∣∣∣∣ ddλ
(
χ1(λ)ρ+(λd1)ρ−(λd2)

)∣∣∣∣
.
k(x, x1)(1 + | log λ|)

λ
1
2

(
sup

0<λ<λ1

∣∣λ− 1
2E±(λ)

∣∣+ sup
0<λ<λ1

∣∣λ 1
2 ∂λE

±(λ)
∣∣).

By Lemma 4.6 the operators involving the error term are absolutely bounded. The t−1 bound follows

from the observations that λ−
1
2 (1+| log λ|) is integrable on the support of χ1 and k(x, x1)v(x1) ∈ L2

x1

uniformly in x.

The case when t− d1 ≤ t
2 is simpler. Here we use t . d1 to bound with

k(x, x1)

t
1
2

∫ ∞
0

χ1(λ)|λ− 1
2E±(λ)|(1 + | log λ|) dλ

The bound follows from Lemma 4.6 as in the previously considered case. The ‘high-high’ interaction

is handled similarly by considering the size of t− (d1 + d2).

We note that the ‘low-low’ interaction is handled by Lemma 18 in [31] along with the discussion

in the proof of Proposition 4.8. This t−1 bound is interpolated with the clear boundedness, due

to the integrability of λ
1
2 (log λ)2 on the support of χ1 by treating the error term as in the mixed

‘high-low’ case above.

�

Proof of Proposition 4.1. The proposition follows from the expansion (37), Lemma 4.7, Proposi-

tion 4.8, Lemmas 4.9, 4.10.

�
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5. Weighted Estimates

In this section, we prove a weighted version of the dispersive decay. At the cost of polynomially

growing spatial weights, we can gain decay in t to acheive a decay rate of t−1(log t)−2 for large t,

which is integrable as t → ∞. Such integrable dispersive bounds have applications in the analysis

of non-linear equations, see [8, 29, 33, 37] for example. This result is obtained in a manner similar

to the weighted decay for the two-dimensional Schrödinger equation obtained in [28, 13], and is

motivated by recent work of Kopylova in [23].

Roughly speaking, we are taking advantage of the fact that the free Schrödinger operator H0 =

−∆ has a resonance at zero energy in dimension two. It is well-known that a resonance at zero

energy slows the long-time decay rate of the evolution operator, see [19, 15, 24, 13] and Section 6

below. By perturbing with a potential that removes this zero energy resonance, one can obtain a

faster time decay rate by allowing for spatially growing weights. A similar gain of time decay rate

can be seen in one spatial dimension, [32].

The condition of zero being regular is equivalent to the boundedness of the operators R±V (λ2)

between certain weighted L2 spaces. We can see from the expansion in Lemma 4.2 that zero is not

regular for the free resolvent due to the singular log λ term.

Due to the representation (5), Theorem 1.2 follows from the following oscillatory integral bound.

Proposition 5.1. If |V (x)| . 〈x〉−3−α for some α ∈ (0, 14 ) and zero is a regular point of the

spectrum of H = −∆ + V , then for t > 2,∣∣∣∣ ∫ ∞
0

(
sin(tλ)〈λ〉− 1

4− + λ cos(tλ)〈λ〉− 3
4−
)
[R+
V (λ2)(x, y)−R−V (λ2)(x, y)] dλ

∣∣∣∣ . 〈x〉 12+α+〈y〉 12+α+t(log t)2
.

The proof of this bound follows in a similar manner as the non-weighted t−
1
2 bound. Accordingly,

we divide this section into two subsections. We first control the high energy, when λ > λ1 > 0 with

a faster time decay when allowing for weights, then we state revised resolvent expansions from [14]

for low energy that allow us to prove the desired time decay for low energy.

5.1. High energy. Much of the care we took in Section 3 was to avoid growth in the spatial

variables by avoiding differentiating the phase eiλ|x−y|. If we allow for a spatially weighted estimate,

one can proceed in a less delicate manner.

As usual, the high energy portion of Proposition 5.1 follows from

Proposition 5.2. If |V (x)| . 〈x〉−3−α for some α ∈ (0, 14 ) and zero is a regular point of the

spectrum of H = −∆ + V , then for t > 2,∣∣∣∣ ∫ ∞
0

eitλχ̃1(λ)λ−
1
2−[R+

V (λ2)(x, y)−R−V (λ2)(x, y)] dλ

∣∣∣∣ . 〈x〉 12+α〈y〉 12+αt1+α
.

The high energy bounds follow with some modifications to Lemma 3.3 and 3.4 which are outlined

below. We again start with the resolvent expansion (15). We consider the contribution of the free
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resolvent with the difference of the ‘+’ and ‘-’ terms so that for the first term in the Born series,

(15), we need only consider the contribution of the Bessel function J0.

Lemma 5.3. For t > 2, we have the bound

sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλχ̃1(λ)χL(λ)λ−
1
2−J0(λ|x− y|) dλ

∣∣∣∣ . 〈x〉 12 〈y〉 12t
3
2

+
1

t2
.

Proof. We first consider the J0 on λ|x− y| . 1. By the expansion (8), we need only bound∫ ∞
0

eitλχ̃1(λ)χL(λ)λ−
1
2−Õ(1) dλ

We note that χ′ is supported on λ ≈ 1 and we have

|∂kλχ̃1(λ)|, |∂kλχL(λ)| . λ−k.

Integrating by parts twice against the phase eitλ yields the bound of

1

t2

∫ ∞
0

∣∣∣∣ ddλ
(
χ̃1(λ)χL(λ)λ−

1
2−Õ(1)

)∣∣∣∣ dλ . 1

t2

∫ ∞
1

λ−
5
2− dλ . t−2.

We next consider when λ|x− y| & 1 by (10) we need to bound bound∫ ∞
0

eitλχ̃1(λ)χL(λ)λ−
1
2−e±iλ|x−y|ω±(λ|x− y|) dλ

Recall that ω±(z) = Õ(z−
1
2 ) and is supported on z & 1. We consider the case of the ‘+’ phase along

with the case of the ‘-’ phase when t−|x− y| ≥ t
2 together. In both cases, we can integrate by parts

twice against the phase eiλ(t±|x−y|) safely and bound with

1

t2

∫ ∞
0

∣∣∣∣ d2dλ2
(
χ̃1(λ)χL(λ)λ−

1
2−ω±(λ|x− y|)

)∣∣∣∣ dλ . t−2 ∫ ∞
1

λ−
5
2− dλ . t−2.

For the ‘-’ phase, we consider the second case in which t − |x − y| ≤ t
2 , in which case t . |x − y|.

Here we integrate by parts once against eitλ and bound with

1

t

∫ ∞
0

∣∣∣∣ ddλ
(
χ̃1(λ)χL(λ)λ−

1
2−e−iλ|x−y|ω−(λ|x− y|)

)∣∣∣∣ dλ . 1 + |x− y|
t|x− y| 12

∫ ∞
1

λ−1− dλ

.
1 + |x− y| 12

t
3
2

.
〈x〉 12 〈y〉 12

t
3
2

.

Here we see why polynomial weights are needed to gain the extra time decay.

�

For the remaining terms in (15) we note that Lemmas 3.3 and 3.4 ensure the convergence of the

λ integrals we wish to analyze. Accordingly, we can omit the χL cut-off function. We now turn to

the second term of the Born series (15) and estimate the ‘+’ and ‘-’ terms separately.

Lemma 5.4. If |V (x)| . 〈x〉−3−α, then for t > 2 we have the bound∣∣∣∣ ∫
R2

∫ ∞
0

eitλλ−
1
2−χ̃1(λ)R±0 (λ2)(x, z)V (z)R±0 (λ2)(z, y) dλ dz

∣∣∣∣ . 〈x〉 12+α〈y〉 12+αt1+α
.
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Proof. This proof follows along the lines of the proof of Lemma 3.3. We recall the expansion for

R±0 )(λ2)(x, y) given in (17). For the ‘low-low’ interaction, integrating by parts twice against the

phase eitλ yields∣∣∣∣ ∫ ∞
0

eitλχ̃1(λ)λ−
1
2−ρ−(λd1)ρ−(λd2) dλ

∣∣∣∣ . 1

t2

∫ ∞
0

∣∣∣∣ d2dλ2 (χ̃1(λ)λ−
1
2−ρ−(λd1)ρ−(λd2))

∣∣∣∣ dλ
.

(1 + log− d1)(1 + log− d2)

t2

∫ ∞
1

λ−
5
2− dλ .

(1 + log− d1)(1 + log− d2)

t2
.

Here we used the inequality (19) to bound with the log− dj spatial weights. For the ‘high-low’

and ‘high-high’ interactions, we consider only the negative phase contributions. For the ‘high-low’

interaction, we again consider cases. If t − d1 ≥ t
2 , then we can integrate by parts against the

combined phase eiλ(t−d1),∣∣∣∣ ∫ ∞
0

eiλ(t−d1)χ̃1(λ)λ−
1
2−ρ−(λd2)ρ+(λd1) dλ

∣∣∣∣
.

1

(t− d1)2

∫ ∞
0

∣∣∣∣ d2dλ2 (χ̃1(λ)λ−
1
2−ρ−(λd2)ρ+(λd1))

∣∣∣∣ dλ
.

1 + log− d2

t2d
1
2
1

∫ ∞
1

λ−
5
2− dλ .

1 + log− d2

t2d
1
2
1

.

On the other hand, if t− d1 ≤ t
2 then we integrate by parts once against the phase eitλ and, similar

to the case of the free resolvent only, use the decay of the Bessel function and that t . d1 to see∣∣∣∣ ∫ ∞
0

eitλχ̃1(λ)λ−
1
2−ρ−(λd2)e−iλd1ρ+(λd1) dλ

∣∣∣∣
.

1

t

∫ ∞
0

∣∣∣∣ ddλ (χ̃1(λ)λ−
1
2−ρ−(λd2)e−iλd1ρ+(λd1))

∣∣∣∣ dλ
.

(1 + log− d2)〈d1〉

td
1
2
1

∫ ∞
1

λ−1− dλ .
(1 + log− d2)〈x〉 12 〈z〉 12

t
3
2

.

There is a corresponding term with d1 and d2 interchanged. The ‘high-high’ interaction is handled

in cases as well. If t− (d1 + d1) ≥ t
2 we use that∣∣∣∣ ∫ ∞

0

eiλ(t−(d1+d2))χ̃1(λ)λ−
1
2−ρ+(λd2)ρ+(λd1) dλ

∣∣∣∣
.

1

t2

∫ ∞
0

∣∣∣∣ d2dλ2 (χ̃1(λ)λ−
1
2−ρ+(λd2)ρ+(λd1))

∣∣∣∣ dλ . 1

t2d
1
2
1 d

1
2
2

∫ ∞
1

λ−
5
2− dλ .

1

t2d
1
2
1 d

1
2
2

.

On the other hand, if t− (d1 + d2) ≤ t
2 , then t . max(d1, d2) and we see that∣∣∣∣ ∫ ∞

0

eitλχ̃1(λ)λ−
1
2−e−iλ(d1+d2)ρ+(λd2)ρ+(λd1) dλ

∣∣∣∣
.

1

t

∫ ∞
0

∣∣∣∣ ddλ (χ̃1(λ)λ−
1
2−e−iλ(d1+d2)ρ+(λd2)ρ+(λd1))

∣∣∣∣ dλ
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.
1 + d1 + d2

td
1
2
1 d

1
2
2

∫ ∞
1

λ−1− dλ .
1 + max(d1, d2)

tmin(d
1
2
1 , d

1
2
2 ) max(d

1
2
1 , d

1
2
2 )
.

(〈x〉〈z〉〈y〉) 1
2+α

t1+α min(d
1
2
1 , d

1
2
2 )
.

To conclude the desired bounds, we note that under the assumptions of Proposition 5.1∫
R2

|V (z)|
(

(1 + log− |x− z|)(1 + |z − y|− 1
2 ) + 〈z〉 12+α|x− z|− 1

2 + (|x− z|− 1
2 |z − y|− 1

2 )

)
dz . 1

uniformly in x and y.

�

Proof of Proposition 5.2. The Proposition follows from Lemma 5.3, Lemma 5.4 and the following

modification of Lemma 3.4 in Section 3. For the tail of the Born series, we note that we can

essentially repeat the argument of Lemma 3.4 but integrate by parts twice in (31) to see

|(31)| . 1

t2

∫ ∞
0

∣∣∣∣ d2dλ2
(
λ−

1
2−E(λ)(x, y)

)
dλ

∣∣∣∣ . 〈x〉 12 〈y〉 12t2
.

Here we use the bound (27) directly instead of separating the phase from the large λr portion. This,

of course, leaves us with polynomial weights and requires an extra power of decay on the potential.

This is easily seen since differentiating the resolvents twice requires a potential that maps L2,− 5
2−

to L2, 12+.

�

5.2. Low Energy. To attain the extra time decay, we need to modify slightly the resolvent expan-

sions laid out in Section 4. Accordingly, we use the resolvent expansions developed for the analysis

of the Schrödinger equation from [13].

Proposition 5.5. Fix 0 < α < 1
4 . Let v(x) . 〈x〉− 3

2−α−. For any t > 2, we have

(45)
∣∣∣ ∫ ∞

0

(sin(tλ) + λ cos(tλ))χ1(λ)[R+
V (λ2)−R−V (λ2)](x, y)dλ

∣∣∣
.

(1 + log+ |x|)(1 + log+ |y|)
t log2(t)

+
〈x〉 12+α+〈y〉 12+α+

t1+α
.

The following corollary of Lemma 4.2 follows from the bounds for ∂λE
±
0 and ∂2λE

±
0 .

Corollary 5.6. For 0 < α < 1 and b > a > 0 we have

|∂λE±0 (b)− ∂λE±0 (a)| . a− 1
2 |b− a|α|x− y| 12+α.

Proof. The bounds on ∂2λE
±
0 from Lemma 4.2 along with the mean value theorem guarantee that

|∂λE±0 (b)− ∂λE±0 (a)| . a− 1
2 |b− a||x− y| 32 .

The statement of this corollary then follows from a simple interpolation with the bounds in

Lemma 4.2.

�
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This corollary implies the improved error bounds below.

Lemma 5.7. Let 0 < α < 1. The error term in Lemma 4.3 satisfies the bound∥∥ sup
0<λ<λ1

λ−
1
2 |E±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<b<λ1

λ
1
2 (b− λ)−α|∂λE±1 (b)− ∂λE±1 (λ)|

∥∥
HS
. 1,

provided that v(x) . 〈x〉− 3
2−α−.

Recall that from Lemma 4.6 we have the expansion

M±(λ)−1 = h±(λ)−1S +QD0Q+ E±(λ),

Lemma 5.8. Let 0 < α < 1. Under the conditions of Lemma 4.6, we have the improved error

bounds∥∥ sup
0<λ<λ1

λ−
1
2 |E±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<b.λ<λ1

λ
1
2+α(b− λ)−α|∂λE±(b)− ∂λE±(a)|

∥∥
HS
. 1,

provided that v(x) . 〈x〉− 3
2−α−.

We note that for fixed x, y the kernel R±V (λ2)(x, y) of the resolvent remains bounded as λ → 0.

This is because of a cancellation between the first and second summands of the second line of the

expansion for R±V in (37). A consequence of this cancellation is cancellation of the slowest decaying

terms in the evolution which makes it possible to obtain the faster time decay.

We first establish the following simple Lemma which allows us to use the Lipschitz bounds on the

error terms from Lemma 5.8. This Lemma is crucial on two fronts, it allows us to minimize both

the decay assumptions on the potential and the size of polynomial weights needed in Theorem 1.2,

see Proposition 5.10, Lemma 5.13, Proposition 5.14, and Proposition 5.15 below.

Lemma 5.9. Assume that E(0) = 0. For t > 2, we have∣∣∣ ∫ ∞
0

e±itλ E(λ)dλ
∣∣∣ . 1

t

∫ ∞
0

|E ′(λ)|
(1 + λt)

dλ+
1

t

∫ ∞
t−1

∣∣E ′(λ+ π/t)− E ′(λ)
∣∣dλ.(46)

Proof. We integrate by parts once and then consider two different regions. We give the proof for

the positive phase, the negative phase follows identically.∫ ∞
0

eitλE(λ)dλ = − i
t

∫ ∞
0

eitλE ′(λ)dλ

We divide this integral into two pieces. The first region 0 < λ < 2π
t , can clearly be bounded by the

first integral in the statement of the Lemma. On the second region, 2π
t < λ, we note that∫ ∞

2π
t

eitλE ′(λ) dλ = −
∫ ∞

2π
t

eit(λ−
π
t )E ′(λ) dλ = −

∫ ∞
π
t

eitλE ′(λ+ π/t) dλ.
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Therefore it suffices to consider (the integral on [π/t, 2π/t] is bounded by the first integral on the

right hand side of (46)) ∫ ∞
π
t

eitλ
(
E ′(λ)− E ′(λ+ π/t)

)
dλ.

�

We start with the contribution of the free resolvent to (45). In this instance we work with the

functions sin(tλ) and λ cos(tλ) directly rather than estimating terms containing e±iλt. This will

allow us to explicitly determine the slowest decaying (order t−1) term.

Proposition 5.10. For any 0 < α < 1
4 , we have∫ ∞

0

(sin(tλ) + λ cos(tλ))χ1(λ)[R+
0 (λ2)−R−0 (λ2)](x, y)dλ =

i

2t
+O

( 〈x〉 12+α〈y〉 12+α
t1+α

)
.

Proof. Using Lemma 4.2, we have

R+
0 −R

−
0 =

i

2
+ E+

0 (λ)− E−0 (λ).

We first consider the sin(tλ) term, the λ cos(tλ) term is smaller. We now rewrite the λ integral

above as

i

2

∫ ∞
0

sin(tλ)χ1(λ)dλ+

∫ ∞
0

sin(tλ)χ1(λ)(E+
0 (λ)− E−0 (λ))dλ =: I + II.

Note that by integrating by parts we obtain

I =
i

2

(
− cos(tλ)χ1(λ)

t

∣∣∣∣∞
0

+
1

t

∫ ∞
0

cos(tλ)χ′1(λ) dλ

)
=

i

2t
+O(t−2)(47)

Since χ′1 is supported on λ ≈ 1, the second term can be integrated by parts again.

Using the bounds in Lemma 4.2 for E(λ) = χ1(λ)(E+
0 (λ) − E−0 (λ)), we see that E(0) = 0, and

from Corollary 5.6,

|∂λE(λ)| . λ− 1
2 |x− y| 12 . λ− 1

2

√
〈x〉〈y〉,∣∣∣∂λE(λ+ π/t)− ∂λE(λ)

∣∣∣ . λ− 1
2−αt−α〈x− y〉 12+α

Accordingly, we decompose sine and cosine into terms involving e±iλt use Lemma 5.9 to obtain

|II| . 1

t

∫ ∞
0

|E ′(λ)|
(1 + λt)

dλ+
1

t

∫ ∞
t−1/2

∣∣E ′(λ+ π/t)− E ′(λ)
∣∣dλ.

Using the bounds above, we estimate the first integral by√
〈x〉〈y〉
t

∫ ∞
0

1√
λ(1 + λt)

dλ .

√
〈x〉〈y〉
t1+α

.

To estimate the second integral, we apply the Lipschitz bound to see

(〈x〉〈y〉) 1
2+α

t

∫ λ1

t−1

λ−
1
2−α(tλ)−αdλ .

(〈x〉〈y〉) 1
2+α

t1+α
,

since α ∈ (0, 14 ).
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For the cosine term we note that we need to control and integral of the form∫ ∞
0

cos(tλ)E1(λ) dλ,

with E1(λ) = λχ1(λ)( i2 + E+
0 (λ) − E−0 (λ)). Here, we can integrate by parts without an order t−1

boundary term. This follows from the vanishing of E1(λ) and at λ = 0. With the bounds on E±0 we

can bound this contribution as we did term II.

�

We now consider the contribution of the second term in (37) to (45):

(48)

∫
R4

∫ ∞
0

(sin(tλ) + cos(tλ)λ)χ1(λ)[R− −R+]v(x1)S(x1, y1)v(y1)dλdx1dy1,

where

(49) R± =
R±0 (λ2)(x, x1)R±0 (λ2)(y1, y)

h±(λ)
.

Proposition 5.11. Let 0 < α < 1/4. If v(x) . 〈x〉− 3
2−α−, then we have

(48) = − i

2t
+O

( (1 + log+ |x|)(1 + log+ |y|)
t(log(t))2

)
+O

( 〈x〉 12+α+〈y〉 12+α+
t1+α

)
.

We will prove this Proposition through a series of Lemmas to control the various terms that arise

from the difference of the ‘+’ and ‘-’ terms. Recall from Lemma 4.2 that

R±0 (λ2)(x, x1) =
1

‖V ‖1
g±(λ) +G0(x, x1) + E±0 (λ)(x, x1).

Recalling that h±(λ) = g±(λ) + c with c ∈ R, we see

R± =
1

‖V ‖21

[
g±(λ) + c+ G̃0(x, x1) + G̃0(y, y1) +

G̃0(x, x1)G̃0(y, y1)

g±(λ) + c

]
+ E±2 (λ),

where

(50) E±2 (λ) :=
1

‖V ‖1

(
1 +

G̃0(x, x1)

g±(λ) + c

)
E±0 (λ)(y, y1) +

1

‖V ‖1

(
1 +

G̃0(y, y1)

g±(λ) + c

)
E±0 (λ)(x, x1)

+
E±0 (λ)(x, x1)E±0 (λ)(y, y1)

g±(λ) + c
,

and G̃0 = ‖V ‖1G0 − c. Using this and (34), we have

R− −R+ = − i

2‖V ‖1
+ c3

G̃0(x, x1)G̃0(y, y1)

(log(λ) + c1)2 + c22
+ E−2 (λ)− E+

2 (λ),

where c1, c2, c3 ∈ R.

We consider first the contribution of the sine, the contribution of the cosine term can be controlled

similarly but without the boundary term due to the additional power of λ, see Proposition 5.10. We

rewrite the λ integral in (48) as a sum of

− i

2‖V ‖1

∫ ∞
0

sin(tλ)χ1(λ)dλ,(51)
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0

sin(tλ)χ1(λ)
G̃0(x, x1)G̃0(y, y1)

(log(λ) + c1)2 + c22
dλ,(52) ∫ ∞

0

sin(tλ)χ1(λ)[E−2 (λ)− E+
2 (λ)]dλ.(53)

Note that by (47) we have

(54) (51) = − i

2t‖V ‖1
+O(t−2).

The leading term above will cancel the boundary term that arose in Proposition 5.10.

The decay rate 1
t log2(t)

appears in the weighted Hs setting in [23] and appears in our analysis due

to the contribution of (52), as shown in the following lemma.

Lemma 5.12. For t > 2, we have the bound

|(52)| . 1

t log2(t)
k(x, x1)k(y, y1)(1 + log+ |x|)(1 + log+ |y|).

Proof. First note that

(55) |G̃0(x, x1)| . 1 + | log |x− x1|| . k(x, x1)(1 + log+ |x|).

Second, we bound the λ-integral by integrating by parts. Denote E(λ) = χ1(λ)
(log(λ)+c1)2+c22

. We note

that E(0) = 0 and satisfies the following bounds

|∂λE(λ)| . χ1(λ)

λ| log(λ)|3
,

∣∣∣∂2λE(λ)
∣∣∣ . χ1(λ)

λ2| log(λ)|3
.

Using these bounds, we will integrate by parts once, then divide the integral into two pieces. On the

first region we consider 0 < λ < t−1 and perform another integration by parts on the second region,

λ > t−1.∣∣∣ ∫ ∞
0

sin(tλ) E(λ) dλ
∣∣∣ . 1

t

∫ t−1

0

|E ′(λ)|dλ+
∣∣∣E ′(t−1)

t2

∣∣∣+
1

t2

∫ ∞
t−1

∣∣∣E ′′(λ)
∣∣∣dλ

.
1

t

∫ t−1

0

1

λ| log(λ)|3
dλ+

1

t| log(t)|3
+

1

t2

∫ ∞
t−1

1

λ2| log(λ)|3
dλ.

A simple calculation shows that

1

t

∫ t−1

0

1

λ| log(λ)|3
dλ ∼ 1

t| log(t)|2
.

Finally we bound the integral on [t−1,∞):

1

t2

∫ ∞
t−1

χ1(λ)

λ2| log(λ)|3
dλ .

1

t2
+

1

t2

∫ 1/2

t−1

1

λ2| log(λ)|3
dλ

.
1

t2
+

1

t2

∫ 1/2

t−1/2

1

λ2
dλ+

1

t2

∫ t−1/2

t−1

1

λ2| log(t)|3
dλ .

1

t
3
2

+
1

t| log(t)|3
.

The first inequality follows since the integral converges on [ 12 ,∞).

Combining the bounds we obtained above finishes the proof of the lemma. �
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Lemma 5.13. Let 0 < α < 1/4. For t > 2, we have the bound

|(53)| . t−1−αk(x, x1)k(y, y1)
(
〈x〉〈y〉〈x1〉〈y1〉

) 1
2+α+.

Proof. We will only consider the following part of (53):∫ ∞
0

eitλχ1(λ)
(

1 +
G̃0(x, x1)

g(λ) + c

)
E0(λ)(y, y1)dλ =:

∫ ∞
0

eitλ E(λ) dλ.(56)

The other parts (and their derivatives) are either of this form or much smaller. We also omit the ±
signs since we can not rely on a cancellation between ‘+’ and ‘-’ terms.

Using Lemma 4.2, Corollary 5.6, and (55), we estimate (for 0 < λ < b . λ < λ1)

|∂λE(λ)| . k(x, x1)(1 + log+ |x|)χ1(λ)λ−
1
2 〈y − y1〉

1
2 . k(x, x1)(1 + log+ |x|)

√
〈y〉〈y1〉λ−

1
2 ,

and

∣∣∂λE(b)− ∂λE(λ)
∣∣ . χ1(λ)k(x, x1)(1 + log+ |x|)λ− 1

2−α(b− λ)α〈y − y1〉
1
2+α

. χ1(λ)k(x, x1)(1 + log+ |x|)(〈y〉〈y1〉)
1
2+αλ−

1
2−α(b− λ)α.

Noting that E(0) = 0 we can use Lemma 5.9 as in Proposition 5.10 to obtain

|(56)| . 1

t

∫ ∞
0

|E ′(λ)|
(1 + λt)

dλ+
1

t

∫ ∞
t−1/2

∣∣E ′(λ+ π/t)− E ′(λ)
∣∣dλ.

Using the bounds above, we estimate the first integral by

k(x, x1)(1 + log+ |x|)
√
〈y〉〈y1〉

t

∫ ∞
0

1√
λ(1 + λt)

dλ .
k(x, x1)(1 + log+ |x|)

√
〈y〉〈y1〉

t1+α
.

To estimate the second integral, we apply the Lipschitz bound with b = λ+ π/t to see

k(x, x1)(1 + log+ |x|)(〈y〉〈y1〉)
1
2+α

t

∫ λ1

t−1

λ−
1
2−α(tλ)−αdλ .

k(x, x1)(1 + log+ |x|)(〈y〉〈y1〉)
1
2+α

t1+α
,

since α ∈ (0, 14 ).

Taking into account the contribution of the term with the roles of x and y switched, and the

bound 1 + log+ |x| . 〈x〉0+, we obtain the assertion of the lemma. �

We are now prepared to prove the Proposition.

Proof of Proposition 5.11. Using the bounds we obtained in (54), Lemma 5.12, Lemma 5.13 in (48),

we obtain

(48) =− i

2t‖V ‖1

∫
R4

v(x1)S(x1, y1)v(y1)dx1dy1

+O
( (1 + log+ |x|)(1 + log+ |y|)

t log2(t)

∫
R4

k(x, x1)v(x1)|S(x1, y1)|v(y1)k(y, y1)dx1dy1

)
+O

((〈x〉〈y〉) 1
2+α+

t1+α

∫
R4

k(x, x1)〈x1〉
1
2+α+v(x1)|S(x1, y1)|v(y1)k(y, y1)〈y1〉

1
2+α+dx1dy1

)
.
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Note that the integrals in the error terms are bounded in x, y, since

sup
y∈R2

‖v(y1)〈y1〉
1
2+α+k(y, y1)‖L2

y1
. 1.

Also note that we can replace S with P in the first integral since the other parts of the operator S

contains Q on at least one side and Qv = vQ = 0. Therefore,

(48) = − i

2t‖V ‖1

∫
R4

v(x1)P (x1, y1)v(y1)dx1dy1

+O
( (1 + log+ |x|)(1 + log+ |y|)

t log2(t)

)
+O

((〈x〉〈y〉) 1
2+α+

t1+α

)
= − i

2t
+O

( (1 + log+ |x|)(1 + log+ |y|)
t log2(t)

)
+O

((〈x〉〈y〉) 1
2+α+

t1+α

)
.

�

Next we consider the contribution of the third term in (37) to (45):

(57)

∫
R4

∫ ∞
0

sin(tλ)χ1(λ)[R−2 −R
+
2 ]v(x1)[QD0Q](x1, y1)v(y1)dλdx1dy1,

where

(58) R±2 = R±0 (λ2)(x, x1)R±0 (λ2)(y1, y).

We notice that many of the terms that arise in this term have zero contribution due to either the

difference of the ‘+’ and ‘-’ terms and the orthogonality of Q and v. Recall from Lemma 4.2 that

R±0 (λ2)(x, x1) = c[a log(λ|x− x1|) + b± i] + E±0 (λ)(x, x1),

where a, b, c ∈ R. Therefore

R±2 = c2
[
(a log(λ|x− x1|) + b)(a log(λ|y − y1|) + b)− 1

]
± ic2

[
a log(λ|x− x1|) + a log(λ|y − y1|) + 2b

]
+ E±3 (λ),

where

(59) E±3 (λ) := c[a log(λ|x− x1|) + b± i]E±0 (λ)(y, y1)

+ c[a log(λ|y − y1|) + b± i]E±0 (λ)(x, x1) + E±0 (λ)(x, x1)E±0 (λ)(y, y1).

Using this, we have

R−2 −R
+
2 = −2c2(a log(λ|x− x1|) + a log(λ|y − y1|) + 2b) + E−3 (λ)− E+

3 (λ).

Using this in (57), and noting that the contribution of the first summand vanishes sinceQv = vQ = 0,

we obtain

(60) (57) =

∫
R4

∫ ∞
0

sin(tλ)χ1(λ)[E−3 (λ)− E+
3 (λ)]v(x1)[QD0Q](x1, y1)v(y1) dλ dx1 dy1.
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Proposition 5.14. Let 0 < α < 1/4. If v(x) . 〈x〉− 3
2−α−, then we have

|(57)| . 〈x〉
1
2+α+〈y〉 12+α+

t1+α
.

Proof. Let E(λ) = χ1(λ)E3(λ) (we dropped the ’±’ signs). Using

| log |x− x1|| . k(x, x1)(1 + log+ |x|),

and the bounds in Lemma 4.2 and Corollary 5.6 we estimate (for 0 < λ < b . λ < λ1)

|∂λE(λ)| . χ1(λ)λ−
1
2−(〈y〉〈x〉〈y1〉〈x1〉)

1
2+k(x, x1)k(y, y1),∣∣∂λE(b)− ∂λE(λ)

∣∣ . χ1(λ)k(x, x1)k(y, y1)(〈x〉〈x1〉〈y〉〈y1〉)
1
2+α+λ−

1
2−α−(b− λ)α.

Applying Lemma 5.9 together with these bounds as in the proof of the previous lemma, we bound

the λ-integral by

k(x, x1)k(y, y1)(〈x〉〈x1〉〈y〉〈y1〉)
1
2+α+

1

t1+α
.

Therefore,

(57) . t−1−α
∫
R4

k(x, x1)k(y, y1)(〈y〉〈y1〉〈x〉〈x1〉)
1
2+α+v(x1)|QD0Q(x1, y1)|v(y1)dx1dy1

.
〈x〉 12+α+〈y〉 12+α+

t1+α
,

since ‖v(x1)k(x, x1)〈x1〉
1
2+α+‖L2

x1
. 1. �

We now turn to the contribution of the error term E±(λ) from Lemma 4.6 in (37). Dropping the

‘±’ signs, we need to consider ∫
R4

∫ ∞
0

eitλ E(λ)v(x1)v(y1) dλ dx1 dy1,(61)

where

E(λ) := χ1(λ)R0(λ2)(x, x1)E(λ)(x1, y1)R0(λ2)(y, y1).

Proposition 5.15. Let 0 < α < 1/4. If v(x) . 〈x〉− 3
2−α−, then we have

|(61)| . 〈x〉
1
2+α+〈y〉 12+α+

t1+α
.

Proof. Let

T0 := sup
0<λ<λ1

λ−
1
2 |E±(λ)|+ sup

0<λ<λ1

λ
1
2 |∂λE±(λ)|

+ sup
0<λ<b.λ<λ1

λ
1
2+α

(b− λ)α
|∂λE±(b)− ∂λE±(λ)|.

By Lemma 4.6, we see that T0 is Hilbert-Schmidt on L2(R2), and hence we have the following

bounds for the kernels

|E±(λ)| . λ 1
2T0, |∂λE±(λ)| . λ− 1

2T0,
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|∂λE±(b)− ∂λE±(λ)| . λ− 1
2−α(b− λ)αT0, if 0 < λ < b . λ < λ1.

Moreover, using Lemma 4.2 and Corollary 5.6, we have (for 0 < λ < b . λ < λ1)

|R0(λ2)(x, x1)| . (1 + | log λ|)k(x, x1)(1 + log+ |x|) . λ0−k(x, x1)〈x〉0+,

|∂λR0(λ2)(x, x1)| . λ−1 + λ−
1
2

√
〈x〉〈x1〉,

|∂λR0(λ2)(x, x1)− ∂λR0(b2)(x, x1)| . (b− λ)α
[
λ−(1+α) + λ−

1
2 |x− x1|

1
2+α

]
.

Therefore we have the bounds (for 0 < λ < b . λ < λ1)

|∂λE(λ)| . λ− 1
2−(〈y〉〈x〉〈y1〉〈x1〉)

1
2 k(x, x1)k(y, y1)T0(x1, y1),

|∂λE(b)− ∂λE(λ)| . λ− 1
2−α−(b− λ)α(〈y〉〈x〉〈y1〉〈x1〉)

1
2+α+k(x, x1)k(y, y1)T0(x1, y1).

Applying Lemma 5.9 as in the proof of Proposition 5.14 above yields the claim of the proposition. �

We close this section by noting that Proposition 5.10, Proposition 5.11, Proposition 5.14, and

Proposition 5.15 yield Proposition 5.2 and hence Theorem 1.2.

6. Zero not Regular

Finally we consider the evolution of (2) when zero is not a regular point of the spectrum of

H = −∆ + V . In particular, we prove Theorem 1.3. The discussion here is not completely self-

contained, the development of the expansions as well as the spectral structure of −∆ + V at zero

energy in two spatial dimensions are quite lengthy and technical. We direct the interested reader to

[20, 13] for these details.

If zero is not regular, we cannot use the resolvent expansions employed in Sections 4 or 5. However,

we can use the resolvent expansions developed in [13] for the Schrödinger evolution with obstructions

at zero energy. The proof of these expansions need not be adjusted to prove the dispersive bounds

for the wave equation, we cite them without proof. These expansions have roots in the work of

Jensen and Nenciu, [20].

Formally, see Theorem 6.2 of [20], Section 5 of [13] or Defintion 6.1 below, the different types of

resonances are defined in terms of the non-invertibility of certain operators. Alternatively, one can

characterize the obstructions in terms of certain spectral subspaces of L2(R2). The obstructions at

zero energy can also be related to distributional solutions to Hψ = 0. If ψ ∈ L∞(R2) but ψ /∈ Lp(R2)

for any p <∞ we say there is an s-wave resonance at zero. If ψ ∈ Lp(R2) for all p ∈ (2,∞] we say

there is a p-wave resonance at zero. Finally, if ψ ∈ L2(R2) there is an eigenvalue at zero.

We note that resonances at zero energy exist only for Schrödinger operators in dimensions n ≤ 4

and can be characterized in terms of distributional solutions to Hψ = 0 where the appropriate space

for ψ differs with the spatial dimension considered. For example, in dimensions three and four one

has 〈·〉−βψ ∈ L2(Rn) where β = 1
2+ in dimension three or β = 0+ in dimension four. In one spatial

dimension, a resonance is characterized by the Wronskian of the Jost solutions, see [18].
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We note that it was shown in [20, 13] that a distributional solution of Hψ = 0 in two spatial

dimensions corresponding to a zero-energy resonance or eigenvalue must satsify ψ ∈ L∞(R2) and

have the form

ψ(x) = c0 +
c1x1 + c2x2
〈x〉2

+ Ψ(x)

Here Ψ ∈ L2, and we write x = (x1, x2) ∈ R2. The first term corresponds to a one-dimensional

space of ‘s-wave’ resonance functions and the second term corresponds to a two-dimensional space

of ‘p-wave’ resonances. One can see that if c0 6= 0 there is an s-wave resonance at zero, if c0 = 0 but

one of c1 or c2 is non-zero there is a p-wave resonance, and finally if c0 = c1 = c2 = 0 there is an

eigenvalue at zero.

We note that in the case of the free equation, when V ≡ 0, there is an s-wave resonance at zero

energy due to the solution ψ ≡ 1 to −∆ψ = 0. In spite of this low energy obstruction, the free

evolution still satisfies the t−
1
2 decay rate. As in the case of the Schrödinger equation, we see (in

Theorem 1.3) that the s-wave resonance does not affect the natural rate of time decay.

The key difference from the previous sections when zero is not regular is that the expansions for

M±(λ)−1 given in Lemmas 4.6 and 5.8 are no longer valid. The effect of such obstructions is a

strictly low energy phenomenon, and the bounds attained in the high energy regime, Section 3, hold

with no adjustments. To prove our main result, we need only adjust the low energy argument to

account for resonances and/or eigenvalues at zero. The development of such expansions was first

studied in the context of the Schrödinger operator eitH in [20], adapted to the study of L1 → L∞

dispersive estimate when zero is regular in [31] and adapted to the case of zero not regular in [13].

We use these expansions in (5) to establish bounds for the wave equation.

The obstructive resonance and/or eigenvalues at zero cause the spectral measure to be more

singular as λ → 0. Roughly speaking, if there is an s-wave resonace, one has a most singular term

of size log λ as λ → 0, see Lemma 6.3 below. A p-wave resonance leads to singular terms of size

λ−2(log λ)−k, for k = 1, 2, . . . , while an eigenvalue leads to singular terms of the form λ−2 plus

singular terms of the same form as when there is a p-wave resonance, see Lemma 6.7 below. As

in the previous sections, we use the Stone formula and expansions for the resolvents to reduce the

operator bounds to showing certain oscillatory integral bounds. In this section we work to bound

the new terms, which are singular as λ → 0, that arise in the expansion(s) for M±(λ)−1 and note

that the remaining terms have clear analogues in the expansions of Section 4 and are bounded as in

the cases handled previously.

To develop a more precise expansion for M±(λ). We define the operators Gj for j = 1, 2 (see (9))

G1f(x) =

∫
R2

|x− y|2f(y) dy,(62)

G2f(x) =
1

8π

∫
R2

|x− y|2 log |x− y|f(x) dy.(63)
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To make the above discussion more precise, we employ the terminology used in [13] for the

Schrödinger evolution. Compare to Definition 4.5.

Definition 6.1. (1) We say zero is a regular point of the spectrum of H = −∆ + V provided

QTQ = Q(U + vG0v)Q is invertible on QL2(R2).

(2) Assume that zero is not a regular point of the spectrum. Let S1 be the Riesz projection onto

the kernel of QTQ as an operator on QL2(R2). Then QTQ+ S1 is invertible on QL2(R2).

Accordingly, we define D0 = (QTQ+ S1)−1 as an operator on QL2(R2). We say there is a

resonance of the first kind at zero if the operator S1TPTS1 is invertible on S1L
2(R2).

(3) We say there is a resonance of the second kind at zero if S1TPTS1 is not invertible on

S1L
2(R2) but S2vG1vS2 is invertible on S2L

2(R2), where S2 is the Riesz projection onto the

kernel of S1TPTS1.

(4) Finally, if S2vG1vS2 is not invertible on S2L
2(R2), we say there is a resonance of the third

kind at zero. We note that in this case the operator S3vG2vS3 is always invertible on S3L
2,

where S3 is the Riesz projection onto the kernel of S2vG1vS2 (see (6.41) in [20] or Section 5

of [13]).

We note that a resonance of the first kind corresponds to an s-wave resonance only at zero. A

resonance of the second kind corresponds to a p-wave resonance at zero but no eigenvalue at zero.

There may or may not be an s-wave resonance at zero for a resonance of the second kind. Finally, a

resonance of the third kind corresponds to an eigenvalue at zero. There may or may not be s-wave

or p-wave resonances at zero in this case.

Note that we used the operator D0 in Section 4 when zero was regular. This is not an abuse of

notation since S1 = 0 when there is no resonance at zero. We also note that QD0Q is still absolutely

bounded in these cases. We also define the operators

D1 := (S1TPTS1 + S2)−1 on S1L
2(R2),

D2 := (S2vG1vS2 + S3)−1 on S2L
2(R2),

D3 := (S2vG2vS2)−1 on S3L
2(R2).

The operators Dj and the projections Sj for j = 1, 2, 3 are all absolutely bounded operators. The

invertibility of S1TPTS1+S2 and S2vG1vS2+S3 is clear from the definition of the projections S2 and

S3. The invertibility of S2vG2vS2 was shown in Lemma 5.4 in [13]. For a more complete discussion

of these operators see Section 5 of [13]. In particular, these operators are absolutely bounded on

SjL
2(R2) for j = 1, 2, 3 appropriately. Finally, we note that the projections S1 − S2, S2 − S3 and

S3 correspond to the s-wave resonances, p-wave resonances and zero eigenvalues respectively.
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The characterization of resonances in Definition 6.1 is useful when trying to invert the operators

M±(λ). To invert these operators one requires a technical inversion lemma, see Lemma 2.1 in [20]

and a longer expansion for M±(λ) which we now state. By Lemma 2.2 of [13]

Lemma 6.2. For λ > 0 define M±(λ) := U+vR±0 (λ2)v. Let P = v〈·, v〉‖V ‖−11 denote the orthogonal

projection onto v. Then

M±(λ) = g±(λ)P + T +M±0 (λ).

Here g±(λ) = a lnλ+ z where a ∈ R\{0} and z ∈ C\R, and T = U + vG0v where G0 is an integral

operator defined in (33). Further, for any 1
2 ≤ k < 2,

M±0 (λ) = Õ1(λk)

if v(x) . 〈x〉−β for some β > 1 + k. Moreover,

M±0 (λ) = g±1 (λ)vG1v + λ2vG2v +M±1 (λ).(64)

Here G1, G2 are integral operators defined in (62), (63), and g±1 (λ) = λ2(α log λ + β±) where

α ∈ R\{0} and β± ∈ C\R. Further, for any 2 < ` < 4,

M±1 (λ) = Õ1(λ`)

if β > 1 + `.

The difference between this expansion and the previous expansion for M±(λ) in Lemma 4.3 is

the more detailed expansion of the ‘error term’ E±1 (λ).

6.1. The case of an s-wave resonance. We first consider the case of a resonance of the first

kind (an s-wave resonance at zero only), that is when there is a distributional solution to Hψ = 0

with ψ ∈ L∞ and ψ /∈ Lp for any p < ∞. As this is the type of resonance that occurs for the free

operator, we expect to attain the t−
1
2 dispersive decay rate.

We note Corollary 2.7 in [13],

Lemma 6.3. Assume that |v(x)| . 〈x〉−1−k− for some k ∈ [ 12 , 2). Then in the case of a resonance

of the first kind, we have

M±(λ)−1 = −h±(λ)S1D1S1 − SS1D1S1 − S1D1S1S

− h±(λ)−1SS1D1S1S + h±(λ)−1S +QD0Q+ Õ1(λk),

provided that λ is sufficiently small.

We can now express the perturbed resolvent as in (37) with the above expansion for M±(λ)−1

in place of the expansion used when zero is regular. This new expansion can be used in the Stone

formula to deduce the desired bound in Theorem 1.3.
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Roughly speaking, the analysis of the low energy contribution when zero is regular controls all by

the the most singular terms in the above expression. That is, one needs to account for the −h±(λ)

terms. Recall that h±(λ) = a log λ + z so a mild singularity in the spectral measure is introduced

as λ → 0. To control the remaining less singular terms requires only very minor adjustments to

Lemma 4.7, Proposition 4.8, Lemma 4.9 and Lemma 4.10. Accordingly we first control the new

singular terms featuring h±(λ).

Proposition 6.4. If |V (x)| . 〈x〉−4−, we have the bound

sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

(sin(tλ) + λ cos(tλ))χ1(λ)K(λ, |x− x1|, |y − y1|)

v(x1)S1D1S1(x1, y1)v(y1) dλ dx1 dy1

∣∣∣∣ . t− 1
2 ,

where

(65) K(λ, p, q) = h+(λ)H+
0 (λp)H+

0 (λq)− h−(λ)H−0 (λp)H−0 (λq)

= 2ia log(λ)[Y0(λp)J0(λq) + J0(λp)Y0(λq)] + 2z[J0(λp)J0(λq) + Y0(λp)Y0(λq)].

Proof. This proof follows along the lines of the proofs presented in Section 4 with modifications

to account for the singularities in the spectral measure. The dispersive bound for the ‘low-low’

interaction follows from the arguments of Proposition 3.2 in [13] and the discussion in the proof

of Proposition 4.8. Where stationary phase is used for Schrödinger, the wave equation admits the

following argument, in a ‘high-low’ or ‘high-high’ interaction and occurs when t−s ≤ t
2 where s = p,

q or p + q, where p = |x − x1|, q = |y − y1|. Consider a ‘high-low’ interaction of the first term in

(65), in the case that t− p ≤ t
2 we have to bound∣∣∣∣ ∫ ∞

0

(sin(tλ) + λ cos(tλ))χ1(λ)(log λ)e−iλpρ+(λp)F (λ, y1, y) dλ

∣∣∣∣
.
∫ λ1

0

log(λ)
1

(1 + λp)
1
2

dλ .
1

p
1
2

∫ λ1

0

λ−
1
2− dλ . p−

1
2 . t−

1
2 .

where we used that p & t in the last step. The ‘high-high’ interaction term can be similarly bounded

when t− (p+ q) ≥ t
2 . Without loss of generality, take p ≥ q then∣∣∣∣ ∫ ∞

0

(sin(tλ) + λ cos(tλ))χ1(λ)(log λ)e−iλ(p+q)ρ+(λp)ρ+(λq) dλ

∣∣∣∣
.
∫ λ1

0

log(λ)
1

(1 + λp)
1
2

dλ .
1

p
1
2

∫ λ1

0

λ−
1
2− dλ . p−

1
2 . t−

1
2 .

Here we used that |ρ+(λq)| . 1.

In the case when t− p ≥ t
2 we integrate by parts. Due to the log λ term, we need to be slightly

more careful and take advantage of the fact that S1 ≤ Q we have S1v = vS1 = 0. We recall the
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following function and estimates from Lemma 3.7 of [13]. Define

G̃±(λ, x, x1) := χ̃(λ|x− x1|)ω±(λ|x− x1|)− e±iλ(|x−x1|−(1+|x|))χ̃(λ(1 + |x|))ω±(λ(1 + |x|)).(66)

with ω± as in (11). Then for any 0 ≤ τ ≤ 1 and λ ≤ 2λ1,

|G̃±(λ, x, x1)| . (λ〈x1〉)τ
(
χ̃(λ|x− x1|)
(λ|x− x1|)

1
2

+
χ̃(λ(1 + |x|))
(λ(1 + |x|)) 1

2

)
,

|∂λG̃±(λ, x, x1)| . 〈x1〉
(
χ̃(λ|x− x1|)
(λ|x− x1|)

1
2

+
χ̃(λ(1 + |x|))
(λ(1 + |x|)) 1

2

)
Taking τ > 0, the smallness of G̃± as λ→ 0 keeps the resulting function integrable if the derivative

acts on the log λ. According we bound with

1

t

∫ ∞
0

∣∣∣∣ ddλ(χ1(λ) log(λ)F (λ, x, x1)G̃±(λ, y, y1)
)∣∣∣∣ dλ . k(x, x1)〈y1〉

t

∫ λ1

0

1 + | log λ|+ λτ−1 dλ

.
k(x, x1)〈y1〉

t

Where we take τ = 0+ in the bounds on G̃ to ensure integrability. The full power of 〈y1〉 arises

from when the derivative acts on G̃±, or if one simply takes τ = 1. A similar bound for the ‘high-

high’ interaction when t − (p + q) ≥ t
2 can be found by replacing F with G̃. It is this term that

necessitates extra decay on the potential, as we now need 〈y1〉v(y1) to be in L2(R2), that is why we

assume v(y1) . 〈y1〉−2−.

�

Finally with p = |x− x1|, q = |x|+ 1 we define

G(λ, x, x1) := χ(λp)J0(λp)− χ(λq)J0(λq).

Then for any τ ∈ [0, 1] and λ ≤ 2λ1 we have

|G(λ, x, x1)| . λτ 〈x1〉τ , |∂λG(λ, x, x1)| . 〈x1〉τλτ−1.(67)

These bounds were proven in Lemma 3.3 of [13] and allow us to extract further λ-smallness from

the Bessel function as λ → 0. This smallness is needed for the SS1D1S1 and S1D1S1S terms that

appear in the expansion of M±(λ)−1 given in Lemma 6.3.

Lemma 6.5. We have the bound

(68) sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

(sin(tλ) + λ cos(tλ))χ1(λ)v(x1)[SS1D1S1(x1, y1) + S1D1S1S(x1, y1)]v(y1)

[
R+

0 (λ2)(x, x1)R+
0 (λ2)(y1, y)−R−0 (λ2)(x, x1)R−0 (λ2)(y1, y)

]
dλ dx1 dy1

∣∣∣∣ . t− 1
2 .
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Proof. This proof follows along the lines of the proof of Proposition 4.8. Due to the difference of

the ‘+’ and ‘-’ resolvents we need only bound integrals of the form∫ ∞
0

sin(tλ)χ1(λ)Y0(λ|x− x1|)v(x1)SS1D1S1(x1, y1)v(y1)J0(λ|y − y1|) dλ,(69)

along with a similar term with the Bessel functions J0 and Y0 switching roles. As usual, the sine

term is the most delicate to control. The key difference from Proposition 4.8 is that we do not have

a projection orthogonal to the span of v on both sides of the operator SS1D1S1, the worst case is

when Y0(λ|x − x1|) is supported on λ|x − x1| . 1 in the above integral. In this case we cannot

replace Y0 with F (λ, x, x1) to control the logarithmic singularity as λ → 0. Instead we use (67) to

gain integrability at zero.

As usual, we interpolate between two bounds to see the t−
1
2 decay rate. We bound Y0 with (44)

to see that

|(69)| . k(x, x1)

∫ λ1

0

(1 + | log λ|)G(λ, y, y1) dλ . k(x, x1).

Here we took τ = 0 in (67) since log λ is integrable at zero. On the other hand, we can integrate by

parts against sin(tλ) to gain time decay.

|(69)| . 1

t

∫ λ1

0

∣∣∣∣ ddλ(Y0(λ|x− x1|)G(λ, y, y1)
)
dλ

∣∣∣∣
.
k(x, x1)

t

∫ λ1

0

λ−1|G(λ, y, y1)|+ (1 + | log λ|)|∂λG(λ, y, y1)| dλ . k(x, x1)〈y1〉τ

t
.

Selecting τ > 0 ensures that the boundary term vanishes as well as keeping the first term in the

integrand integrable at λ = 0.

The remaining terms to consider, ‘low-high’ and ‘high-high’ terms follow from the proof in Propo-

sition 4.8, we leave the details to the reader.

�

We turn now to the terms in Lemma 6.3 with h±(λ)−1. These terms are controlled by either

Lemma 4.9 or the following bound whose proof is identical.

Lemma 6.6. We have the bound

(70)

∣∣∣∣ ∫
R4

∫ ∞
0

sin(tλ)χ1(λ)

(
R+

0 (λ2)(x, x1)v(x1)SS1D1S1S(x1, y1)v(y1)R+
0 (λ2)(y1, y)

h+(λ)

− R−0 (λ2)(x, x1)v(x1)SS1D1S1S(x1, y1)v(y1)R−0 (λ2)(y1, y)

h−(λ)

)
dλ dx1 dy1

∣∣∣∣ . t− 1
2

uniformly in x and y.

The analysis for the remaining terms in Lemma 6.3 are controlled as in Section 4, see Proposi-

tion 4.8, Lemmas 4.9 and 4.10. In particular one takes advantage of the identity Qv = vQ = 0 to
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employ the functions F (λ, x, x1), G̃(λ, x, x1) and/or G(λ, x, x1) in the place of Y0 and J0 respec-

tively. Finally we note that the statements of the propositions and lemmas hold if we replace sin(tλ)

with cos(tλ)λ as these terms and their derivatives are even smaller. This suffices to prove the first

statement in Theorem 1.3.

6.2. The case of a p-wave resonance and/or eigenvalue. We now consider the case when there

are non-trivial solutions of Hψ = 0 with either ψ ∈ Lp for all p > 2, that is a p-wave resonance, or

ψ ∈ Lp for all p ≥ 2 an eigenvalue at zero. (Equivalently, when S1TPTS1 is not invertible on S1L
2.)

These types of resonances correspond to a loss of the time decay rate.

Let D = D2 + S3D3S3vG2vS2D2S2vG2vS3D3S3 − S3D3S3vG2vS2D2 −D2S2vG2vS3D3S3. For

the case of a p-wave resonance we note the expansion in Corollary 4.2 of [13],

Lemma 6.7. Assume that v(x) . 〈x〉−3−. Then, in the case of a resonance of the second kind, we

have

(71) M±(λ)−1 =
S2D2S2

g±1 (λ)
+QΓ±1 (λ)Q+QΓ±2 (λ) + Γ±3 (λ)Q+ Γ±4 (λ)

+ (M±(λ) + S1)−1 + Õ1(λ2−),

where Γ±i , i = 1, 2, 3, 4 are absolutely bounded operators on L2(R2) with Γ±1 (λ) = O(λ−2(log λ)−2),

Γ±2 (λ),Γ±3 (λ) = O(λ−2(log λ)−3), and Γ±4 (λ) = O(λ−2(log λ)−4).

In the case of a resonance of the third kind, we have

(72) M±(λ)−1 =
S3D3S3

λ2
+
S2DS2

g±1 (λ)
+QΓ±1 (λ)Q+QΓ±2 (λ) + Γ±3 (λ)Q+ Γ±4 (λ)

+ (M±(λ) + S1)−1 + Õ1(λ2−),

where D is as above, and Γi are absolutely bounded operators on L2(R2). These operators are distinct

from the Γi in the case of a resonance of the second kind, but satisfy the same size estimates.

We note that the operators (M±(λ) + S1)−1 have an expansion nearly identical in form to that

we use in Lemma 4.6, see Lemma 2.5 in [13]. The error term is slightly different, but obeys the same

error bounds. The resulting terms behave as in those already bounded in Section 4.

The new singular terms in (71) and (72) are all surronded by projections which are orthogonal to

the span of v, thus we can use the functions F (λ, x, x1) G(λ, x, x1), and G̃(λ, x, x1) defined in the

previous section to gain extra λ smallness near λ = 0.

The solution operator can be shown be bounded if there are p-wave resonances and/or eigenvalues

at zero energy. The proof is nearly identical to that found in Section 4 of [13] for the Schrödinger

equation. This follows as the oscillatory nature of the imaginary Gaussian eitλ
2

in the integral is not

used in [13] for these terms, and no integration by parts is used due to the highly singular nature

of integrals as λ → 0. In our case we do not use any oscillation of cos(tλ). We provide the details
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for the convience of the reader. We first establish the bounds for the cosine operator, then describe

how one can reduce the contribution of the sine operator to the bounds for the cosine operator.

Accordingly, it suffices to establish the estimates for the contributions of the terms:

S2D2S2

g±1 (λ)
+QΓ1(λ)Q+QΓ2(λ) + Γ3(λ)Q+ Γ4(λ).

For the rest of the analysis, the standing assumption is that the potential satisfies the decay |V (x)| .
〈x〉−6−. We start with the following.

Lemma 6.8. We have the bound

(73) sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

cos(tλ)λχ1(λ)

[
R+

0 (λ2)(x, x1)v(x1)S2D2S2(x1, y1)v(y1)R+
0 (λ2)

g+1 (λ)

− R−0 (λ2)(x, x1)v(x1)S2D2S2(x1, y1)v(y1)R−0 (λ2)(y1, y)

g−1 (λ)

]
dλ dx1 dy1

∣∣∣∣ . 1.

Proof. We note that we must exploit some cancellation between the ‘+’ and ‘−’ terms. Recall that

H±0 (y) = J0(y)± iY0(y) and the definition of g±1 (λ) in Lemma 4.3 give us

R+
0 (λ2)R+

0 (λ2)

g+1 (λ)
− R−0 (λ2)R−0 (λ2)

g−1 (λ)
=
J0(λp)J0(λq)− Y0(λp)Y0(λq)

λ2[(log λ+ c1)2 + c22]
(74)

+
(J0(λp)Y0(λq) + Y0(λp)J0(λq))(log λ+ c1)

λ2[(log λ+ c1)2 + c22]

We again must consider cases based on the supports of the resolvents. That is, we need to consider

‘low-low’, ‘high-low’ and ‘high-high’ interactions. Let us first consider the case when both resolvents

are supported on the low part of their arguments. Contribution of the first term in (74) satisfies the

required bound since |J0(z)| . 1, and 1
λ(log λ)2 is integrable on [0, λ1]. Since the other terms have

additional powers log λ in the numerator, we need to use the relation S2v = vS2 = 0 (recall that

S2 ≤ Q).

Consider the contribution of the second term in (74). We replace χY0 with F (λ, ·, ·), and using

the bounds on F , we see∣∣∣∣ ∫ ∞
0

χ1(λ)
F (λ, x, x1)F (λ, y, y1)

λ[(log λ+ c1)2 + c22]
dλ

∣∣∣∣ . k(x, x1)k(y, y1)

∫ λ1

0

1

λ(log λ)2
dλ . k(x, x1)k(y, y1).

The mixed J0 and Y0 terms in the second part of (74) are bounded similarly using |G(λ, x, x1)| .
λ0+〈x1〉0+ to ensure integrability.

When one or both of the Bessel functions is supported on high energies, we use the functions

G̃(λ, p, q). The bound |G̃(λ, x, x1)| . λ0+〈x1〉0+ suffices for obtaining the required bound. The

details are left to the reader. �

Lemma 6.9. For Ci(z) = J0(z) or Y0(z) for i = 1, 2, we have the bound

sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

cos(tλ)λχ1(λ)C1(λ|x− x1|)v(x1)
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QΓ1(λ)Q(x1, y1)v(y1)C2(λ|y − y1|) dλ dx1 dy1
∣∣∣∣ . 1.

Proof. Unlike in Lemma 6.8 we do not need to use any cancellation between the ‘+’ and ‘−’ terms.

We consider the terms that arise when both C1 and C2 are supported on small energies. Consider,∫ ∞
0

cos(tλ)λχ1(λ)χ(λp)C1(λp)vQΓ1(λ)Qvχ(λq)C2(λq) dλ,

where p = |x− x1|, q = |y − y1|. In the worst case when C1 = C2 = Y0, as Qv = vQ = 0, we replace

χY0 with F to obtain

(75)

∣∣∣∣ ∫ λ1

0

λF (λ, x, x1)Γ1(λ)F (λ, y, y1) dλ

∣∣∣∣
.

∣∣∣∣ ∫ λ1

0

F (λ, x, x1)F (λ, y, y1)

λ(log λ)2
dλ

∣∣∣∣ sup
0<λ<λ1

|λ2(log λ)2Γ1(λ)|

. k(x, x1)k(y, y1) sup
0<λ<λ1

|λ2(log λ)2Γ1(λ)|.

The last line follows since sup0<λ<λ1
|λ2(log λ)2Γ1(λ)| defines a bounded operator on L2(R2) (by

Lemma 6.7), we are done. The other low energy terms are similar using G instead of F .

For the large energies, we note that the argument runs in a similar manner. Using χ̃(z)(|J0(z)|+
|Y0(z)|) . 1, and an argument as in (75), it easily follows that the integral is bounded as desired. �

We need the following modified version of Lemma 6.9 to control the other Γi(λ) terms, which

don’t have the projection Q on both sides. It is worth noting that the loss of a Q on either side

occurs exactly with the gain of a (log λ)−1 smallness as λ → 0, which is exactly the gain one gets

from replacing Y0 with F .

Corollary 6.10. For Ci(z) = J0(z) or Y0(z) for i = 1, 2, we have the bound

sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

cos(tλ)λχ1(λ)C1(λ|x− x1|)v(x1)QΓ2(λ)(x1, y1)v(y1)C2(λ|y − y1|) dλ dx1 dy1
∣∣∣∣ . 1.

The same bounds hold when QΓ2(λ) is replaced by Γ3(λ)Q or Γ4(λ).

Proof. We repeat the analysis of Lemma 6.9. Consider the case when both Ci(λ·) are supported on

low energies and both are Y0. We note that when λ < 1, we have

|Y0(λp)χ(λp)| . (1 + | log λ|)(1 + log− p).(76)

Using this and replacing χY0 with F on one side, we obtain the bound∫ λ1

0

|F (λ, x, x1)|(1 + log− q)

λ| log λ|2
dλ sup

0<λ<λ1

|λ2(log λ)3Γ2(λ)|

. k(x, x1)k(y, y1) sup
0<λ<λ1

|λ2(log λ)3Γ2(λ)|.
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The same bound holds for Γ3(λ)Q. For the contribution of Γ4(λ), we have∣∣∣∣ ∫ ∞
0

λχ(λ)Y0(λp)Γ4(λ)Y0(λq) dλ

∣∣∣∣
.
∫ λ1

0

(1 + | log λ|)(1 + log− p)(1 + | log λ|)(1 + log− q)

λ| log λ|4
dλ sup

0<λ<λ1

|λ2(log λ)4Γ4(λ)|

. k(x, x1)k(y, y1) sup
0<λ<λ1

|λ2(log λ)4Γ4(λ)|.

The other cases are similar.

When one of the Ci(λ·) is supported on high energies, the analysis is less delicate. The required

bound follows from χ̃(z)(|J0(z)|+ |Y0(z)|) . 1. �

This completes the proof in the case of a resonance of the second kind.

We note that the above bounds in Lemma 6.9 and Corollary 6.10 also hold for the Γi term in

(72). Thus for a resonance of the third kind, it suffices to consider the leading λ−2 term in (72).

Noting (65) and the fact that the kernel of D3 is real-valued, the following lemma completes the

analysis.

Lemma 6.11. We have the bound

sup
x,y∈R2

∣∣∣∣ ∫
R4

∫ ∞
0

cos(tλ)λχ1(λ)J0(λ|x− x1|)v(x1)
S3D3S3

λ2
v(y1)Y0(λ|y − y1|) dλ dx1 dy1

∣∣∣∣ . 1.(77)

Proof. We provide a sketch of the proof. Due to similarities to previous proofs, we leave some details

to the reader. We again consider the case when the Bessel functions are supported on low energy

first. Accordingly, we wish to control∣∣∣∣ ∫ ∞
0

cos(tλ)λχ1(λ)χ(λp)J0(λp)v(x1)
D3

λ2
v(y1)χ(λq)Y0(λq) dλ

∣∣∣∣
.

∣∣∣∣ ∫ ∞
0

χ1(λ)
G(λ, x, x1)F (λ, y, y1)

λ
dλ . 〈x1〉τk(y, y1).

Where we used S3 ≤ Q and the known bounds for G with τ > 0.

For the case when one function is supported on high energy, we have∣∣∣∣ ∫ ∞
0

cos(tλ)λχ1(λ)χ̃(λp)J0(λp)v(x1)
D3

λ2
v(y1)χ(λq)Y0(λq) dλ

∣∣∣∣
.

∣∣∣∣ ∫ ∞
0

χ1(λ)
G̃(λ, x, x1)F (λ, y, y1)

λ
dλ . 〈x1〉τk(y, y1).

Similarly one uses G̃(λ, y, y1) instead of F (λ, y, y1) if we have χ̃(λq).

When both functions are supported on high energy, we have∣∣∣∣ ∫ ∞
0

cos(tλ)λχ1(λ)χ̃(λp)J0(λp)v(x1)
D3

λ2
v(y1)χ̃(λq)Y0(λq) dλ

∣∣∣∣
.

∣∣∣∣ ∫ ∞
0

χ(λ)
G̃(λ, x, x1)G̃(λ, y, y1)

λ
dλ . 〈x1〉τ 〈y1〉τ .

�



TIME DECAY ESTIMATES FOR THE WAVE EQUATION WITH POTENTIAL IN DIMENSION TWO 43

We are now ready to prove the main theorem of this section.

Theorem 6.12. Let V : R2 → R be such that |V (x)| . 〈x〉−β for some β > 6. Further assume

that H = −∆ + V has a resonance of the second or third kind at zero energy. Then, there is a time

dependent operator Ft such that

sup
t
‖Ft‖L1→L∞ . 1, ‖ cos(t

√
H)Pac − Ft‖L1→L∞ . |t|−1, |t| > 1.

Proof. If we denote the terms that arise from the contribution of the terms in the first lines of (71)

and (72) as Ft, Lemmas 6.8, 6.9, and 6.11 and Corollary 6.10 show that

sup
t
‖Ft‖L1→L∞ . 1.

As the remaining terms in (71) and (72) are identical in form to those that arise in the analysis

of a resonance of the first kind, we can use the bounds from the previous subsection to establish the

theorem. �

The sine operator can be seen to obey similar bounds, but with a bound that, at worst, grows

linearly in time. To see this, we need only bound the most singular terms of the sine evolution. We

use the following inequality to reduce the analysis to terms of the form previously considered∣∣∣∣ ∫ ∞
0

sin(tλ)
E(λ)

λ
dλ

∣∣∣∣ . |t|∫ ∞
0

|E(λ)| dλ.

Where we used the crude bound | sin(tλ)| ≤ |tλ|.
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