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Conservation of Linear Momentum for a Differential Control Volume 
 

When we applied the rate-form of the conservation of mass equation to a differential control 
volume (open system) in Cartesian coordinates, we obtained the continuity equation: 

 ( ) ( ) ( )yx zVV V
t x y z

ρρ ρρ ⎡ ⎤∂∂ ∂∂
= − + +⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (1) 

We now want to do the same thing for conservation of linear momentum. As with the 
development of the continuity equation, we will first apply the rate-form of conservation of 
linear momentum to a finite-size open system (a control volume) and then consider what happens 
in the limit as the size of the control volume approaches zero.  

 

Conservation of Linear Momentum for a Two-Dimensional Flow 

For simplicity, we will consider a two-dimensional, unsteady flow subject to a body force b as 
shown in Figure 1. The body force, the density, and the velocity all are field variables and may 
vary with position (x, y) and (t).  

In words, the time rate of change of the linear momentum within the system equals the net 
transport rate of linear momentum into the system by external forces and by mass flow. To apply 
this principle, we select a small finite-size volume in the flow field, ∆x∆y∆z, where ∆z is the 
depth of the small volume into the paper, i.e. in the direction of the z-axis. Because of the 
multiple momentum transfers in a moving fluid, we will only focus on only one component of 
linear momentum at a time.  

We will begin with the x-component of linear momentum, referred to hereafter as the “x-
momentum.” To identify the transfers of x-momentum, we enlarge the small volume and show 
all transfers of  x-momentum on the diagram of the control volume (see Figure 2). Linear 
momentum can be transported into the system by surface forces acting on all four sides, by body 
forces within the system, and by mass flows across all four sides of the control volume.  

x 

y 
Density field:   ( ), ,x y tρ ρ=  

Velocity field:  ˆ ˆ
x yV V= +V i j   

 where ( ), ,x xV V x y t=  and  ( ), ,y yV V x y t=  

 and î , ĵ  = unit vectors for x, y axes 

Body force field: ˆ ˆ
x yb b= +b i j  

Figure 1 – A differential control volume for a two-dimensional flow 
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Writing the rate-form of the conservation of linear momentum equation for the x-momentum 
gives: 

 , ,

Net transport rate Net transport rateRate of change
of x-momentum of x-momentumof
into the system into the systemx-momentum

by surface forces by body forcinside the system

x
x net x netsurface body

dP F F
dt

= + ( ) ( )

n

Net transport rate Net transport rate
of x-momentum of x-momentum
 into the system  into the system
by mass flow by mass flowes in the x-directio in the y-direction

x x y xnet net
m V m V+ +  (2) 

The left-hand side of Eq. (2) represents the rate of change (storage or accumulation). The terms 
on the right-hand side correspond to the transport rates of x-momentum illustrated in Figure 2.  

 

Rate of change of x-momentum inside the control volume 
The x-momentum inside the control volume can be written as follows using the mean-value 
theorem from calculus: 

 ,x sys x x
x y z

P V dV V x y zρ ρ
∆ ∆ ∆

= = ∆ ∆ ∆∫  (3) 

where the tilde notation xVρ  indicates an average or mean value. The mean-value theorem says 
that the integral of a continuous function xVρ over a volume equals the product of the volume 
and the mean value of the continuous function within the volume; thus, a simple product can re-
place the integral.  

To find the rate-of-change of the x-momentum inside the control volume, the left-hand side 
of Eq. (2), we evaluate the derivative 
    

,y x y
F  

,y x y y
F

+∆
 

x x x
m V  

y x y y
m V

+∆
 

y x y
m V  

Fbody,x ,x x x
F  ,x x x x

F
+∆  

x 

y 

Key 
Force transport 
Mass transport 

Figure 2 – Transport rates of the x-component of linear momentum 
for the differential control volume 

x x x x
m V
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 ( ) ( )
( )xx

x

VdP d V x y z x y z
dt dt t

ρ
ρ

∂
= ∆ ∆ ∆ = ∆ ∆ ∆

∂
 (4) 

Because we are holding x, y, and z constant during our differentiation the result is a partial de-
rivative. 
 

Net transport rate of x-momentum by external forces 
The net transport rate of x-momentum by body forces is related to bx , the component of the 
body force acting in the positive x-direction, and can be written as 

 ( ),

Net transport rate of x-momentum
into the system by body forces

x net x xbody
x y z

F b dV b x y zρ ρ
∆ ∆ ∆

= = ∆ ∆ ∆∫  (5) 

The gravitation field of the earth produces the most common body force; however, other body 
forces can also be important. For example, body forces produced by electrostatic fields can be 
used to enhance the flow of hot air over baked goods and speed cooking time. A body of fluid in 
a uniformly accelerating reference frame, for instance a glass of pop sitting on the floor of your 
car as it accelerates, can also be studied by treating the acceleration as a body force.  

The net transport rate of x-momentum by surface forces is related to external forces acting on 
each surface of the control volume. For a two-dimensional flow, the surface force for any surface 
can be decomposed into two components, a normal force and a shear force. Each force, shear or 
normal, is defined as the integral of the appropriate surface stress over the surface area.   

The x-component of the surface force acting on the surface at x x+ ∆ , is wrtten as  

 ,x x xx xxx x x x
y z

F dA y zσ σ
+∆ +∆

∆ ∆

⎡ ⎤= − = − ∆ ∆⎣ ⎦∫  (6) 

where the minus sign occurs because the normal stress xxσ by convention points out from the 
surface.  

The x-component of the surface force acting on the surface at x , is written as  

 ,x x xx xxx x
y z

F dA y zσ σ
∆ ∆

⎡ ⎤= − = − ∆ ∆⎣ ⎦∫  (7) 

The x-component of the surface force acting on the surface at y+∆y, is written as  

 ,y x yx yxy y y y
x z

F dA x zσ σ
+∆ +∆

∆ ∆

⎡ ⎤= = ∆ ∆⎣ ⎦∫  (8) 

where the shear stress yxσ  points in the positive x-direction on a surface whose normal vector 
points in the positive y-direction. 
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The x-component of the surface force acting on the surface at y, is written as 

 ,y x yx yxy y
x z

F dA x zσ σ
∆ ∆

⎡ ⎤= = ∆ ∆⎣ ⎦∫  (9) 

where again the minus sign comes from the sign convention on the shear stress yxσ . 

 
Combining these forces to find the x-component of the net surface force acting on the control 
volume gives 

 

{ } { }

{ } { }
( )

, , , , ,

Net transport rate
of x-momentum
into the system

by surface forces

x net x x x x y x y xsurface x x x y y y

xx xx yx yxx x x y y y

xx xx yxx x x y y

F F F F F

z y z y z x z x

z y

σ σ σ σ

σ σ σ

+∆ +∆

+∆ +∆

+∆ +∆

= − + −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ∆ ∆ − − ∆ ∆ + ∆ ∆ − ∆ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= − ∆ ∆ +⎣ ⎦ ( )

( ) ( )

( )

yx y

yxxx

yxxx

z x

x z y y z x
x y

x y z
x y

σ

σσ

σσ

⎡ ⎤− ∆ ∆⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ∂∂

= ∆ ∆ ∆ + ∆ ∆ ∆⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤∂∂

= + ∆ ∆ ∆⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

 (10) 

 

Net transport rate of x-momentum by mass flow 
Finally, we will examine the net transport rate of x-momentum by mass flow. Mass flow 
occurs on all four surfaces of the control volume. To begin, we will determine the x-momentum 
tranport rate of x-momentum into the system with mass flow at x and x + ∆x:  

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

Net transport rate
of x-momentum
into the system
by mass flow

in the x-direction

x x x x x xnet x x x

x x x xin outx x x

x x x xx x x

x x

m V m V m V

V z y V V z y V

z y V V V V

V V
z y x

x

ρ ρ

ρ ρ

ρ

+∆

+∆

+∆

= −

⎡ ⎤ ⎡ ⎤= ∆ ∆ − ∆ ∆⎣ ⎦ ⎣ ⎦

⎡ ⎤= ∆ ∆ −⎣ ⎦
⎡ ⎤∂

= − ∆ ∆ ∆⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (11) 

 
Now we can determine the transport rate of x-momentum into the system with mass flow at y 
and y + ∆y: 
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:  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

Net transport rate 
of x-momentum
into the system 

by mass flow
in the x-direction

y x y x y xnet y y y

y x y xin outy y y

y x y xy y y

y x

m V m V m V

V z x V V z x V

z x V V V V

V V
z x y

y

ρ ρ

ρ ρ

ρ

+∆

+∆

+∆

= −

⎡ ⎤ ⎡ ⎤= ∆ ∆ − ∆ ∆⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= ∆ ∆ −⎢ ⎥⎣ ⎦
⎡ ⎤∂
⎢ ⎥= − ∆ ∆ ∆
⎢ ∂
⎣ ⎦

⎥

 (12) 

 
Putting it all together (the first time) 
Now that we have developed expressions for each x-momentum transport or storage rate, we can 
substitute these values back into Eq. (2) repeated here for reference: 
 

 , ,

Net transport rate Net transport rateRate of change
of x-momentum of x-momentumof
into the system into the systemx-momentum

by surface forces by body forcinside the system

x
x net x netsurface body

dP F F
dt

= + ( ) ( )

n

Net transport rate Net transport rate
of x-momentum of x-momentum
 into the system  into the system
by mass flow by mass flowes in the x-directio in the y-direction

x x y xnet net
m V m V+ +  

Making the substitutions for each term we have the following expression: 
 

 

( ) ( ) ( )
rate of change

net transport rate of x-momentumof x-momentum
into the system by surface forcesinside the system
(x-component of surface forces)

yxx xxV
x y z x y z

t x y
σρ σ⎡ ⎤∂∂ ∂

∆ ∆ ∆ = + ∆ ∆ ∆⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

( )( )

( ) ( )

 

net tranport rate of x-momentum
into the system by body forces
(x-component of body forces)

net transport rate of x-momentum
into the system

by mass flow in the x 

x

x x

b x y z

V V
x y z

x

ρ

ρ

+ ∆ ∆ ∆ +

⎡ ⎤∂
− ∆ ∆ ∆⎢ ⎥

∂⎢ ⎥⎣ ⎦

( ) ( )

net transport rate of x-momentum
into the systemdirection by mass flow in the y direction

y xV V
x y z

y
ρ⎡ ⎤∂

⎢ ⎥+ − ∆ ∆ ∆
⎢ ⎥∂
⎣ ⎦

 (13) 

 

Dividing through by the volume ∆x∆y∆z and taking the limit as ∆x→0, ∆y→0, and ∆z→0, the 
average terms indicated by the tilde notation ( )  approach the value at the point (x,y,t).  
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This gives the conservation of x-momentum for a differential control volume (two-
dimensional flow):  

 ( ) ( ) ( )y xyxx x xxx
x

V VV V V
b

t x y x y
ρσρ ρσ ρ

⎡ ⎤∂∂∂ ∂∂
= + + − +⎢ ⎥

∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (14) 

A similar expression can be developed for the conservation of y-momentum for a differential 
control volume (two-dimensional flow): 

 
( ) ( ) ( )y x y y yxy yy

y

V V V V V
g

t x y x y
ρ ρ ρσ σ

ρ
⎡ ⎤∂ ∂ ∂∂ ∂

= + + − +⎢ ⎥
∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (15) 

 

Revisiting the surface forces 
Before we proceed, we need to re-examine the surface forces. Surface forces include both pres-
sure forces or viscous forces. The pressure force is a normal force produced by the local pressure 
P acting over a surface. The local pressure is an intensive property of the substance and is a nor-
mal stress whose value is independent of orientation. Viscous forces are produced by viscous 
stresses ijτ that depend on fluid viscosity and velocity gradients in the flow. Viscous stresses 
strongly depend on orientation and for any surface can be decomposed into both normal stresses 
and shear stresses. 

For a two-dimensional flow the surface stress σij can be separated into a pressure term P and a 
viscous stress term ijτ as shown below: 

 

Pressure Stress Viscous Stress

0
0

xx yx
ij

xy yy

xx yx xx yx

xy yy xy yy

P P
P P

σ σ
σ

σ σ

τ τ τ τ
τ τ τ τ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
− + −⎡ ⎤ ⎡ ⎤⎡ ⎤

= = +⎢ ⎥ ⎢ ⎥⎢ ⎥− + −⎣ ⎦⎣ ⎦ ⎣ ⎦

 (16) 

Now the surface stress terms can be rewritten to clearly separate the pressure and viscous 
stresses. For example in Eq. (14), the surface stress terms can be rewritten as follows: 

 ( )
Pressure Viscous

yx yx yxxx xx
xx

PP
x y x y x x y

σ τ τσ ττ
∂ ∂ ∂∂ ∂∂ ∂

+ = − + + = − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (17) 
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Putting all together (again) 
Substituting the appropriate value for each stress back into Equations (14) and (15) and rearrang-
ing terms gives the following expressions conservation of linear momentum for a differential 
control volume in two-dimensional flow: 

 

( ) ( ) ( )

( ) ( ) ( )

x-component

y-component

y xyxx x xxx
x

y x y y yxy yy
y

V VV V VP b
t x x y x y

V V V V VP b
t y x y x y

ρτρ ρτ ρ

ρ ρ ρτ τ
ρ

⎡ ⎤∂∂∂ ∂∂∂
= − + + + − +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ ∂ ∂∂ ∂∂
= − + + + − +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (18) 

Note that there is now a clear distinction between the pressure terms and the viscous stress terms. 
To evaluate the viscous stresses we need to have a constitutive model for the fluid that describes 
how the shear stresses are related to the velocity gradients in the flow and to the fluid property 
known as viscosity. When a flow is inviscid, it has no viscosity and the viscous stress terms dis-
appear. This greatly simplifies the mathematics and can give useful results under some condi-
tions. 

 

Navier-Stokes Equations for Incompressible, Two-Dimensional Flow 
Many important flows are essentially incompressible and this leads to significant simplifications. 
Additionally, we will restrict ourselves to Newtonian fluids. With these assumptions, we repro-
duce the Navier-Stokes equations for incompressible, two-dimensional flow. 

To develop these equations, we first assume that the flow is incompressible and consider the con-
sequences. The continuity equation reduces, Eq. (1) becomes 

 0 yx VV
x y

∂∂
= +

∂ ∂
 (19) 

 
In Eq. (18), the conservation of linear momentum equation, incompressible flow brings the den-
sity outside of the derivatives as shown below: 
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( ) ( )

( ) ( )

x-component

y-component

y xyx x xx xx
x

x y y yy xy yy
y

V VV VV P b
t x x y x y

V V V VV P b
t y x y x y

ττρ ρ ρ

τ τ
ρ ρ ρ

⎡ ⎤∂∂ ∂∂ ∂∂
= − + + + − +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ ∂∂ ∂ ∂∂
= − + + + − +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (20) 

Further simplifications occur by expanding the terms in brackets and applying the incompressi-
ble continuity equation. For the term in brackets in the x-component equation in Eq. (20), we 
have the following simplification 
 

 

( ) ( )

0  Why?

y x yx x x x x
x x y x

yx x x
x x y

x x
x y

V V VV V V V VV V V V
x y x x y y

VV V VV V V
x y x y

V VV V
x y

=

∂ ∂∂ ∂ ∂ ∂
+ = + + +

∂ ∂ ∂ ∂ ∂ ∂

∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

 (21) 

 
Substituting this result and its counterpart for the y-component back into Eq. (20) gives differen-
tial equation for conservation of linear in an incompressible, two-dimensional flow: 

 

x-component

y-component

yxx xx x x
x x y

y xy yy y y
y x y

V V VP b V V
t x x y x y

V V VP b V V
t y x y x y

ττρ ρ ρ

τ τ
ρ ρ ρ

∂ ⎡ ⎤∂ ∂ ∂ ∂∂
= − + + + − +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

∂ ∂ ∂ ∂ ∂⎡ ⎤∂
= − + + + − +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

 (22) 

Please note the long list of qualifiers for these two equations. All of them are important and if 
used under any other conditions, Equation (22) will be in invalid. 
 
A Newtonian fluid is a fluid in which viscous stresses are proportional to the rate of angular de-
formation within the fluid. The constant of proportionality is µ — the dynamic viscosity. The 
viscous stresses for an incompressible, two-dimensional flow of a Newtonian fluid become 

 2 ,     2 ,      and     y yx x
xx yy yx xy

V VV V
x x y x

τ µ τ µ τ τ µ
∂ ∂⎛ ⎞∂ ∂

= = = = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (23) 

Using these results, the viscous stress terms in Eq. (22) are replaced by terms containing the fluid 
viscosity and velocity gradients. Note viscous stresses depend on both the fluid and the flow. 



Navier Stokes_01d.doc Prepared by D. E. Richards Page 9 of 9 

The next step is to substitute the viscous stress terms in Eq. (23) back into Eq. (22) and use the 
incompressible continuity equation, Eq. (19), to simplify the expressions. Once done we recover 
the Navier-Stokes equations. 

The x-component of the Navier-Stokes Equation for a two-dimensional, incompressible 
flow is shown below: 

 
2 2

2 2

Rate of change Net transport rate
Net transport rateof x-momentum of x-momentum
of x-momentumper unit volume by pressure forces
by viscous forcesper unit volume
per unit vo

x x xV V VP
t x x y

ρ µ
⎛ ⎞∂ ∂ ∂∂

= − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ Net transport rate
of x-momentum Net transport rateby body forces of x-momentumper unit volume by mass flow

per unit volumelume

x x
x x y

V Vb V V
x y

ρ ρ
⎛ ⎞∂ ∂

+ − +⎜ ⎟∂ ∂⎝ ⎠
 (24) 

This arrangement shows a clear connection to our original conservation of linear momentum 
equation; however, the more traditional arrangement found in most textbooks moves the mass 
transport term to the other side of the equal sign. When arranged in this form we have the result 
we have been seeking 

Navier-Stokes Equations for a Two-Dimensional, Incompressible Flow 

 

2 2

2 2

2 2

2 2

x-component

y-component

x x x x x
x y x

y y y y y
x y y

V V V V VPV V b
t x y x x y

V V V V VPV V b
t x y y x y

ρ ρ ρ µ

ρ ρ ρ µ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂∂
+ + = − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ∂
+ + = − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (25) 

 

Following a similar process for three-dimensions, we can derive the full set of equations. These 
are stated below without explanation or development: 

Navier-Stokes Equations for an Incompressible Flow 

x-component: 
2 2 2

2 2 2
x x x x x x x

x y z x
V V V V V V VPV V V b
t x y z x x y z

ρ ρ ρ µ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

y-component: 
2 2 2

2 2 2
y y y y y y y

x y z y

V V V V V V VPV V V b
t x y z y x y z

ρ ρ ρ µ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ∂

+ + + = − + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

z-component: 
2 2 2

2 2 2
z z z z z z z

x y z z
V V V V V V VPV V V b
t x y z z x y z

ρ ρ ρ µ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 


