Rose-Hulman Institute of Technology
 Sophomore Engineering Curriculum

ES 202
Fluid and Thermal Systems

Answers to Lab 5

Example 1: (Exercises with interpolation)

Sometimes property data does not fall on the points given in the table. Under these conditions, we must interpolate between the available data points on the table to find the necessary information. Typically this is done using linear interpolation. This means that the missing data between the available points can be estimated by assuming that the functional relationship is a straight line.

	Superheated water vapor, $v=v(P, T)$		
Temperature	Pressure		
	1.5 bars	3.0 bars	
$200^{\circ} \mathrm{C}$	$1.444 \mathrm{~m}^{3} / \mathrm{kg}$	$0.716 \mathrm{~m}^{3} / \mathrm{kg}$	
$240^{\circ} \mathrm{C}$	$1.570 \mathrm{~m}^{3} / \mathrm{kg}$	$0.781 \mathrm{~m}^{3} / \mathrm{kg}$	

a) $P=1.5$ bars, $T=215{ }^{\circ} \mathrm{C}$ (linear) [Answer: $1.491 \mathrm{~m}^{3} / \mathrm{kg}$] $\quad v=\underline{1.491 \mathrm{~m}^{3} / \mathrm{kg}}$

- Using linear interpolation between the given data points at $P=1.5$ bars,

$$
\frac{v-1.444}{215-200}=\frac{1.570-1.444}{240-200} \quad \Rightarrow \quad v=1.491 \mathrm{~m}^{3} / \mathrm{kg}
$$

b) $P=2.0$ bars, $T=200^{\circ} \mathrm{C}$ (linear) [Answer: $1.201 \mathrm{~m}^{3} / \mathrm{kg}$] $\quad v=\underline{1.201 \mathrm{~m}^{3} / \mathrm{kg}}$

- Using linear interpolation between the given data points at $T=200^{\circ} \mathrm{C}$,

$$
\frac{v-1.444}{2-1.5}=\frac{0.716-1.444}{3-1.5} \quad \Rightarrow \quad v=1.201 \mathrm{~m}^{3} / \mathrm{kg}
$$

c) $P=2.0$ bars, $T=215^{\circ} \mathrm{C}$ (bi-linear) [Answer: $1.241 \mathrm{~m}^{3} / \mathrm{kg}$] $\quad v=\underline{\mathbf{1 . 2 4 1}} \mathrm{m}^{3} / \mathrm{kg}$

- Neither the given pressure nor the given temperature are the tabulated values, a bi-linear interpolation procedure (in both the pressure and temperature axes) is necessary to obtain the desired value.
- Firstly, perform linear interpolation between the given data points at $P=1.5$ bars, $T=215^{\circ} \mathrm{C}$,

$$
\frac{v_{1.5}-1.444}{215-200}=\frac{1.570-1.444}{240-200} \quad \Rightarrow \quad v_{1.5}=1.491 \mathrm{~m}^{3} / \mathrm{kg}
$$

- Secondly, perform linear interpolation between the given data points at $P=3.0$ bars, $T=215^{\circ} \mathrm{C}$,

$$
\frac{v_{3.0}-0.716}{215-200}=\frac{0.781-0.716}{240-200} \Rightarrow \quad v_{3.0}=0.740 \mathrm{~m}^{3} / \mathrm{kg}
$$

- Finally, perform linear interpolation between the given data points at $P=1.5$ bars, $T=215^{\circ} \mathrm{C}$ and $P=3.0$ bars, $T=215^{\circ} \mathrm{C}$,

$$
\frac{\boldsymbol{v}-\boldsymbol{v}_{1.5}}{\boldsymbol{v}_{3.0}-\boldsymbol{v}_{1.5}}=\frac{2.0-1.5}{3.0-1.5}
$$

$$
\Rightarrow \quad v=1.241 \mathrm{~m}^{3} / \mathrm{kg}
$$

d) $P=1.5$ bars, $v=1.500 \mathrm{~m}^{3} / \mathrm{kg}$ (linear) [Answer: $218{ }^{\circ} \mathrm{C}$] $T=\underline{218}{ }^{\circ} \mathrm{C}$

- Using linear interpolation between the given data points at $P=1.5$ bars,

$$
\frac{1.5-1.444}{\boldsymbol{T}-200}=\frac{1.570-1.444}{240-200} \Rightarrow \quad \boldsymbol{T}=218^{\circ} \mathrm{C}
$$

Rose-Hulman Institute of Technology Sophomore Engineering Curriculum

Example 2: (Exercises on property table look-up for water)
a) Provide the information requested (unshaded boxes) in the following table for WATER. Use the following abbreviations when specifying the phases:

$$
\begin{aligned}
\mathrm{CL} & =\text { compressed (subcooled) liquid } \\
\text { SL } & =\text { saturated liquid } \\
\text { SM } & =\text { saturated mixture } \\
\text { SV } & =\text { saturated vapor } \\
\text { SHV } & =\text { superheated vapor }
\end{aligned}
$$

Use "NA" for items that are not applicable and "INSUF" for insufficient information at a particular state.

State	Phase	Pressure, $P[\mathrm{kPa}]$	Temper- ature $T\left[{ }^{\circ} \mathrm{C}\right]$	Quality, x	Specific Volume, v $\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	Specific Internal Energy, u $[\mathrm{~kJ} / \mathrm{kg}]$	Specific Enthalpy, $h[\mathrm{~kJ} / \mathrm{kg}]$	Specific Entropy, s $[\mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}]$
1	SHV	500	350	NA	0.5701		3167.7	
2	SL	500	151.86		0.00109		640.23	1.8607
3	SM	500	151.86	0.1875	0.07118	1000		
4	SV	500	151.86	1.0		2561.2	2748.7	
5	SM	101.33	100	0.30	0.5026			3.1213
6	SHV	91.17	100	NA	2.0		2677.3	
7	SM	101.33	100	0.7760	1.2984			6.0
8	SL	101.33	100	0.0	0.00104	418.94	419.04	1.3069
9	SL	5000	263.99	0.0	0.00129	1147.81	1154.23	2.9202
10	CL	5000	100	NA	0.00104	417.52	422.72	1.3030

b) States 8 and 9 are approximations of state 10 . Which approximation is more accurate? Plot these three states on the $P-v$ and $T-v$ diagrams and explain your choice.

- State 8 is a more accurate approximation of State 10. In the compressed liquid region, the properties are less sensitive to changes in pressure than those in temperature. Hence, the compressed liquid properties can be approximated by:

$$
\begin{gathered}
u(P, T) \cong u_{f}(T) \\
v(P, T) \cong v_{f}(T) \\
s(P, T) \cong s_{f}(T) \\
h(P, T) \cong h_{f}(T)+\left[P-P_{\text {sat }}(T)\right] v_{f}(T)
\end{gathered}
$$

Example 3: (More exercise with property lookup for Refrigerant 134a)
Provide the information requested in the following table for Refrigerant 134a. Use the following abbreviations when specifying the phases:

$$
\begin{aligned}
\text { CL } & =\text { compressed (subcooled) liquid } \\
\text { SL } & =\text { saturated liquid } \\
\text { SM } & =\text { saturated mixture } \\
\text { SV } & =\text { saturated vapor } \\
\text { SHV } & =\text { superheated vapor } \\
\text { NA } & =\text { not applicable } \\
\text { INSUF } & =\text { insufficient information }
\end{aligned}
$$

State	Phase	Pressure, $P(\mathrm{kPa})$	$\begin{gathered} \text { Temper- } \\ \text { ature } \\ T\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Specific Volume, ($\mathrm{m}^{3} / \mathrm{kg}$)	Specific Internal Energy, u (kJ/kg)	Specific Enthalpy, $h(\mathrm{~kJ} / \mathrm{kg})$	Specific Entropy, s (kJ/kg-K)	Quality, x
1	CL	240	-12	. 000750			0.1388	NA
2	SHV	240	20	. 09339		266.85		NA
3	SL	240	-5.37		42.77		0.1710	0.0
4	SM	240	-5.37		139.26	150		0.5322
5	SV	240	-5.37	0.0834		244.09		
6	SM	770.06	30	0.01111		160.29		0.4
7	SM	770.06	30	0.0188			0.7367	0.6999
8	SL	770.06	30		90.84		0.3396	0.0
9	SV	770.06	30	0.0265	243.1	263.5	0.9070	1.0
10	CL	1400	30		90.84	92.02		NA
11	SHV	1400	60	0.01495		283.1		NA

