ROSE-HULMAN INSTITUTE OF TECHNOLOGY Sophomore Engineering Curriculum

ES 202

Teaching and Learning Objectives of Week 1

1. Define, Illustrate, and Compare and Contrast the following terms and concept	s:
Fields – scalar vs. vector	
scalar: temperature, pressure, density, internal energy	
vector: velocity, linear momentum, angular momentum	
Flow description	
spatial: one-, two-, three-dimensional	
temporal: steady vs. steady	
Conservation of mass (differential form) — continuity equation	
for an incompressible flow	
for a steady (steady-state) flow	
Flow visualization	
Pathline vs. streakline vs. streamline	
Stream function for a 2-D incompressible flow	
relation to V_x and V_y	
rotation (vorticity)	
strain	
No-slip condition	
Shear stress vs. normal stress	
Viscosity	
Newtonian vs. non-Newtonian fluid	
Conservation of linear momentum (differential form)	
Euler equation for an incompressible flow	
Navier-Stokes Equations for an incompressible flow	

- 2. Given functions describing an incompressible, two-dimensional velocity field, determine if the velocity field satisfies the continuity equation, *i.e.* is it physically possible?
- 3. Given an incompressible velocity field that satisfies the continuity equation, determine if the flow field is rotational or irrotational.
- 4. Given the general Navier-Stokes equation for an incompressible flow and a problem description, use the given information about the flow to simplify the equations to the applicable form.
- 5. Given the velocity profile adjacent to a wall and the viscosity of the Newtonian fluid, determine the direction and magnitude of the shear stress acting *on* the wall.
- 6. Explain in general terms how the continuity equation, the Euler equation, and the Navier-Stokes equations were developed from the appropriate fundamental conservation principles.
- 7. In ES201, you learned about the accounting principle for extensive properties and how extensive properties can be stored, transported, and generated or destroyed. Using the accounting principle, provide a physical interpretation for each term in the continuity equation, the Euler equation and Navier-Stokes equations for an incompressible flow.