Problem 6-2

A thin, $1.5-\mathrm{m}$ wide (into the page), right-angle gate with negligible mass is free to pivot about a frictionless hinge at Point O. The horizontal portion of the gate is $2-\mathrm{m}$ long and covers a $30-\mathrm{cm}$ diameter drain pipe which contains air at atmospheric pressure. A $10-\mathrm{kg}$ concrete block ($\rho=2300 \mathrm{~kg} / \mathrm{m}^{3}$) is tied as a hanging weight to the end of the horizontal section. Denote the minimum water depth at which the gate will pivot to allow water to flow into the pipe to be $h_{\text {min. }}$. Develop an equation with $h_{\min }$ as the only unknown and solve for its value.

Remark: The lightly shaded area in the figure is filled with water.

