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Abstract   
 
We have developed a sequence of laboratories for our introductory controls classes to identify 
and control one, two, and three degree of freedom mass-spring-damper systems. Initial estimates 
of damping ratios and natural frequencies are made using the log-decrement method with only 
one cart free to move at a time. By exciting the system at various frequencies the magnitude 
portion of the Bode plot for the transfer functions between the input and the position of each cart 
is determined, and the resonant frequencies are estimated.  Once the parameters for the transfer 
functions have been determined and the corresponding state variable model is identified the 
students control the positions of the carts with state variable control. This sequence of 
experiments has a number of practical benefits. By exciting these systems with various 
frequencies, the students understand transient response and sinusoidal steady state in terms of the 
physical behavior of mechanical systems. The students also develop a better appreciation for the 
use of Bode plots. Finally, nearly all of the parameters can be estimated in at least two ways and 
the students must compare these estimates to check for consistency. 
       
 
Background 
 
Eleven ECP-210a spring/mass/damper rectilinear systems were purchased through an NSF CCLI 
grant obtained by investigators from both the Electrical and Computer Engineering and 
Mechanical Engineering departments at Rose-Hulman Institute of Technology. These systems 
allow for easy implementation of different standard controller types and are easily 
reconfigurable. Figure 1 shows one of the “carts” of the system, connected with two springs. The 
position encoder is shown toward the back of the system. The carts are moved via a motor with a 
rack and pinion mechanism. 
 
Faculty from both the Mechanical Engineering and Electrical and Computer Engineering 
departments have developed weekly 3 hour labs utilizing these systems in their introductory 
control systems classes.  In the ECE introductory class the students regularly utilize these 
systems to first identify and then control a one degree of freedom system (only one cart moves) 
utilizing classical control techniques including root locus methods and various model matching 



methods. Once the students have been introduced to state variable methods about halfway though 
the course, they first try to control the position of the cart in the one degree of freedom system. 
In the final two labs in the class the students utilize both time domain and frequency domain 
methods to identify the systems for the two and three degree of freedom systems, and then use 
state variable methods to control the systems. 
 
 

 
 
Figure 1: One cart (with variable masses) connected to two (variable) springs of the ECP-210a 
system. The position encoder is shown in the background. 
 
 
During lab the students first determine the natural frequency and damping ratio for each cart 
individually, when it is the only cart free to move. Next they look at the response of a step input 
to determine the gain for each transfer function. Finally the students excite the systems at various 
frequencies to determine the magnitude portion of the Bode plot for the transfer functions 
between the input and the position of each cart, and the resonant frequencies are estimated. The 
students are given Matlab code to do the optimization to fit the transfer functions to the measured 
frequency response. Nearly all of the parameters can be estimated in at least two ways and the 
students must compare theses estimates to check for consistency. 
 
System identification utilizing frequency domain response is a fairly common method of 
determining the transfer function of an unknown system.1,2,3 Elementary circuit textbooks4,5 
introduce the concept of  system identification utilizing the Bode plot as part pf their introduction 
to the frequency response characterization of circuits. Common experiments in typical signals 
and system courses include some type of frequency domain system identification of "black box'' 
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systems, usually low pass, high pass, or band pass filters6.  Typical introductory control system 
texts7.8 often include problems where students are given a Bode plot and asked to determine the 
system's transfer function. While students have clearly been presented with the idea of 
determining a system's transfer function from a Bode plot, they often do not understand how to 
construct a Bode plot experimentally, and are not used to putting the two ideas together. 
 
In the next section the three different labs are discussed in more detail. In particular, the transfer 
functions and state models are presented. Then typical parameter values (initial and final 
estimates), and the fit between the estimated transfer functions and the measured frequency 
response is represented. The section concludes with examples of state variable feedback and 
sinusoidal steady state response for the three degree of freedom system. 
 
Laboratory Descriptions 
 
One Degree of Freedom System. The one degree of freedom system most commonly used in 
ECE-320 with classical control techniques can be modeled as shown in Figure 3. The transfer 
function for this model can easily be shown to be 
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where K  is the static gain, nω is the natural frequency, and ζ is the damping ratio. In the time 
domain,  both ζ and nω  can be estimated using the log decrement method, and the static gain 
can be estimated by determining the ratio of the steady state value of the cart position 1,ssx and 
the amplitude of the step response input. Next the system is excited at various frequencies, and a 
Bode plot of experimental data is constructed. This experimental frequency response data is 
compared with the frequency response of the transfer function to determine the parameters 
( K , nω , and ζ ) again. A typical result is displayed in Figure 4, which shows the measured 
frequency response as discrete diamonds and the fit of the transfer function to the measured 
frequency response as a solid line. For this configuration the initial and final estimates of the 
transfer function parameters are shown in Table 1.  These results are fairly typical, although the 
initial and final damping ratio estimates are not usually this close. It is emphasized to the 
students that they need to compare their initial estimates with the final estimates as a check on 
their work, and this comparison must be included in their report. 
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Figure 3. Model of a one degree of freedom system. Only one cart is free to move, there is at 
least one spring attached. 
 

 
Figure 4: Fit of measured frequency response and estimated transfer function for the one degree 
of freedom system. 

 
Parameter Initial 

Estimate 
Final 

Estimate 
K  30.6 28.9 
nω  13.2 13.2 

ζ  0.10 0.10 
 

Table 1. Initial and final estimates of the parameters for the one degree of freedom model. 
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1In order to determine the state model, we define 1q x= , and 2q x1= & , and obtain the following state equations  
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Clearly all of the parameters in the state variable model can be obtained from the transfer 
function for this system. 

 
Two Degree of Freedom System. The two degree of freedom system we utilize can be modeled 
as shown in Figure 5. For our equations there must be at least two springs present. The transfer 
function between the position of the second cart and the input can be shown to be 
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and the transfer function between the position of the first cart and the input can be shown to be  
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Here aω  and bω are the resonant frequencies of the two cart system, which can be estimated 
while constructing the measured frequency response plots.  and  are the static gains, which 
are estimated by examining the step response of the system and computing the ratio of the steady 
state positions of the two carts and the amplitude of the step input. 

1K 2K

2ω  and 2ζ  are the natural 
frequency and damping ratio of the second cart when it is the only cart moving. These are 
determined by the log decrement analysis. Finally, aζ  and bζ are the damping ratios for the 
system. These are unknown, and we usually use the initial estimate that both of them are 
approximately 0.1. At this point we point out to the students the fact that both transfer functions 
have the same denominator (the characteristic polynomial) and this is very useful in attempting 
to fit the transfer function to the data. Since the transfer function for the second cart has no zeros, 
and the transfer function for the first cart has two zeros, it is easiest to match the frequency 
response for the second cart first. Once these parameters are fixed, the parameters of the 
numerator in the transfer function for the first cart can be determined. Typical transfer function 
estimates for the second cart and the first cart are shown in Figures 6 and 7, respectively. 



For this configuration the initial and final estimates are shown in Table 2. Although the natural 
frequencies and damping ratios for the first cart do not explicitly appear in the transfer functions, 
they are recomputed as part of the transfer function computation. The results in this table are 
consistent with our usual results, in that our initial estimates of the natural frequencies and gains 
tend to match closely with the final estimates, but there are often large percentage changes in the 
damping ratios. Again, it is emphasized to the students that they need to compare their initial 
estimates with the final estimates as a check on their work, and include this comparison in their 
lab report. 
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Figure 5. Two degree of freedom system. Two carts are free to move and there must be at least 
two springs. 
 

Parameter Initial 
Estimate 

Final 
Estimate 

1K  25.6 24.3 

2K  17.2 16.4 

aω  9.4 10.1 

bω  37.7 37.3 

aζ  0.10 0.11 

bζ  0.10 0.03 

1ω  19.4 19.8 

2ω  32.1 32.9 

1ζ  0.03 0.05 

2ζ  0.02 0.04 
 
Table 2. Initial and final estimates of the parameters for the two degree of freedom model. 
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In order to determine the state model, we define 1 1q x= , 2 1q x= & , 3q x2= , and , and get the 
following state equations  
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As part of their homework assignment before this lab, the students are required to fill in the 
missing steps in the derivation of the transfer functions, the state variable model, and how to 
extract all quantities necessary from the transfer functions to determine the quantities needed in 
the state variable model.  
 

 
 
Figure 6. Fit of measured frequency response and estimated transfer function for the second 
cart, 2 ( ) / ( )X s F s , for the two degree of freedom system. 
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Figure 7. Fit of measured frequency response and estimated transfer function for the first 
cart, 1( ) / ( )X s F s , for the two degree of freedom system. 

 
 

Three Degree of Freedom System. The three degree of freedom system we utilize can be 
modeled as shown in Figure 8. For our equations there must be at least three springs present. The 
transfer function between the position of the third cart and the input can be shown to be 
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Similarly the transfer function between the position of the second cart and the input is  
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while the transfer function between the position of the first cart and the input is 
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Here aω , bω , and cω are the resonant frequencies of the three cart system, which can be 
estimated while constructing the measured frequency response plots. , , and  are the 
static gains, which are estimated by examining the step response of the system and computing 
the ratio of the steady state positions of the three carts and the amplitude of the step input.

1K 2K 3K

3ω and 

3ζ  are the natural frequency and damping ratio of the third cart when it is the only cart moving. 
These are determined by the log decrement analysis. aζ , bζ , and  cζ are the damping ratios for 
the system. These are unknown, and we usually use the initial estimate that they are all 
approximately 0.1. 

xω  and yω are the approximate frequencies of the nulls. Our initial estimate of these frequencies 
is determined by the initial frequency response measurements.  Finally, xζ  and yζ generally 
define the sharpness of the null, and are again approximated as 0.1. We again point out to the 
students the fact that all three transfer functions have the same denominator (the characteristic 
polynomial) and this is very useful in attempting to fit the transfer function to the data. Since the 
transfer function for the third cart has no zeros it is easiest to match the frequency response for 
the third cart first. Once these parameters are fixed, the parameters of the numerator in the 
transfer function for the second cart can be determined, since we have a good idea of all of the 
parameters. Finally the parameters for the transfer function for the first cart are determined. 
These are usually the parameters we have the least confidence in. Typical transfer function 
estimates for the third, second, and first cart are shown in Figures 9, 10, and 11, respectively. For 
this configuration the initial and final estimates are shown in Table 3. Although the natural 
frequencies and damping ratios for the first two carts do not explicitly appear in the transfer 
functions, they are recomputed as part of the transfer function computation. The results in this 
table are again consistent with our usual results, in that our initial estimates of the natural 
frequencies and gains tend to match closely with the final estimates,  though there are often large 
percentage changes in the damping ratios.  
 
Again, it is emphasized to the students that they need to compare their initial estimates with the 
final estimates as a check on their work, and include this comparison in their report. 
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Figure 8: Three degree of freedom system. Three carts are free to move and there must be at least 
three springs. 

 
Figure 9.  Fit of measured frequency response and estimated transfer function for the third cart, 

3 ( ) / ( )X s F s , for the three degree of freedom system. 
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Figure 10.  Fit of measured frequency response and estimated transfer function for the second 
cart, 2 ( ) / ( )X s F s , for the three degree of freedom system. 

 
Figure 11.  Fit of measured frequency response and estimated transfer function for the first cart, 

1( ) / ( )X s F s , for the three degree of freedom system. 
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Parameter Initial 

Estimate 
Final 

Estimate 
1K  36.0 39.4 

2K  28.5 30.6 

3K  14.0 16.0 

aω  6.3 6.9 

bω  23.8 24.1 

cω  36.6 34.1 

aζ  0.10 0.25 

bζ  0.10 0.03 

cζ  0.10 0.03 

xω  15.6 20.2 

yω  31.4 31.6 

xζ  0.1 0.04 

yζ  0.2 0.03 

1ω  19.3 20.0 

2ω  26.2 27.2 

3ω  25.6 25.6 

1ζ  0.03 0.08 

2ζ  0.01 0.02 

3ζ  0.02 0.04 
 
Table 3: Initial and final estimates of the parameters for the three degree of freedom model. 
 
 
Defining , , , 1 1q x= 2 1q x= & 3 2q x= 4 2q x= & , 5q x3= , and 6q x3= & ,  we get the following state equations 
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As part of their homework assignment before this lab, the students are required to fill in the 
missing steps in the derivation of the transfer functions, the state variable model, and how to 
extract all quantities necessary from the transfer functions to determine the quantities needed in 
the state variable model.  
 
Sinusoidal Steady State. Although our students have been utilizing phasors in at least two 
previous circuits classes, in going through these labs it becomes quite clear that many of them do 
not really understand what sinusoidal steady state means. Figures 12 through 14 show the 
response of the three degree of freedom system analyzed previously when the system is excited 
by a 4 Hz sine wave. The motion of the first cart is displayed in Figure 12, of the second cart in 
Figure 13, and the final cart in Figure 14. These three responses are very typical of the types of 
sinusoidal responses the students see in measuring the frequency response of the system and 
constructing the Bode plot. Since the students need to find the ratio of the steady state output 
amplitude to the input amplitude at each frequency to construct the magnitude portion of the 
Bode plot, they often do not know which part of the response to use. Since these mechanical 
systems have relatively large time constants (compared to the circuits they have been analyzing) 
and provide a very visual physical demonstration of transient and steady state response, they 
make an ideal tool to illustrate the idea of sinusoidal steady state. In addition, the concept of the 
resonant frequency is also very clearly and visually demonstrated. 

 
Step Response of the Three Degree of Freedom System. After modeling the systems in lab, the 
students then try and control the position of each cart, one at a time, using state variable feedback 
with a prefilter to adjust the gain based on the model. Specifically, they try and have each cart 
follow a 1 cm step input while limiting percent overshoot and settling time. In addition, they are 
required to compare the response of the real system with their model of the system. Typical 
results are shown in Figures 15 - 17, which show the step response of the three degree of 
freedom system we have modeled for a 1 cm step input. The goal in this case was to control the 
position of the second cart. As the figures show, the model and real system are fairly accurate for 
the first two carts, with more deviations in the third cart. In addition, the steady state values of 
the real system and the model often differ as they do in this example. Since these are the last labs 
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in the course, the students are by now well aware that the discrepancies are most likely due to 
modeling errors, and are to be expected. 

 
 

Figure 12. The motion of the first cart in the three degree of system when the system is excited 
by a 4 Hz sine wave.  

 
Figure 13. The motion of the second cart in the three degree of system when the system is 
excited by a 4 Hz sine wave.  
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Figure 14. The motion of the third cart in the three degree of system when the system is excited 
by a 4 Hz sine wave.  

 

 
Figure 15: The position of the first cart for step response of the three degree of freedom system 
we have modeled. Both the response of the real system and the response of our model are shown. 
We were trying to have the second cart match a one cm step input. 
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Figure 16: The position of the second cart for step response of the three degree of freedom 
system we have modeled. Both the response of the real system and the response of our model are 
shown. We were trying to have the second cart match a one cm step input. 
 

 
Figure 17: The position of the third cart for step response of the three degree of freedom system 
we have modeled. Both the response of the real system and the response of our model are shown. 
We were trying to have the second cart match a one cm step input. 
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Assessment  
 
At the conclusion of the course, the thirteen students taking the class were asked to complete 
questionaires designed by Rose-Hulman's Office of Institutional Research, Planning, and 
Assessment. These questionaires had two types of questions: survey questions and questions 
about the level of knowledge and confidence in various course concepts. The results of the 
relevant survey questions are displayed in Table 4, which indicates that most of the students felt 
that the course helped them with the use and limitations of models in control systems and with 
the concept of the frequency response of a system. Table 5 presents the results for the relevant 
average knowledge and average confidence part of the questionaire. The knowledge score was 
based on the following scale: 
 
Pre Course 
1 = No clue, this concept is new to me 
2 = Low, I had only heard about the concept 
3 = Moderate, I knew the concept but had not applied it 
4 = High, I knew the concept and had applied it 
 
Post Course 
1 = No Clue, I do not know to concept 
2 = Low, I have only heard about the concept, but do not know it well enough to apply it. 
3 = Moderate, I know the concept but do not know it well enough to apply it 
4 = High, I know the concept and have applied it in this course.  
 
The Confidence score was based on the following scale: 
 
Pre Course 
1 = No Clue, I have no idea if I can apply the concept 
2 = Low, I had heard of the concept but had little confidence that I could apply it 
3 = Moderate, I was somewhat confident that I understood the concept and was fairly sure I 
could apply it to a new problem 
4 = High, I was confident that I understood and apply it to a new problem 
 
Post Course 
1 = No Clue, I am not confident that I can apply the concept 
2 = Low, I have heard of the concept but am not sure if I can apply it 
3 = Moderate, I am somewhat confident that I understand the concept and I can apply it to a 
new problem 
4 = High, I am confident that I understand and can apply the concept to problems. 
 
As the average knowledge/confidence levels indicate, the student felt their knowledge level had 
increased during the course, and their confidence had also increased. This paper has presented 
three of the labs in this course, though there were a total of eight labs in the course, so it is not 
possible to attribute all of the increases in confidence and knowledge to just the labs presented in 
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this paper. However, these were the labs in the course most closely associated with system 
identification and modeling. 
 

Question Strongly
Agree 

 
Agree 

 
Disagree 

Strongly 
Disagree

I Don't
Know 

As a result of this class, I understand the 
uses of models in designing control systems 
that will help me in future classes. 

 
75 % 

 
25 % 

 
0 % 

 
0 % 

 
0 % 

As a result of this class, I understand the 
limitations of models in designing control 
systems that will help me in future classes. 

 
58 % 

 
33 % 

 
8 % 

 
0% 

 
0% 

This class helped me to better understand 
the frequency response of a system. 

 
42  % 

 
58 % 

 
0% 

 
0 % 

 
0% 

 
Table 4:  Results of student questionaires at end of the course. 

 
 

Concept 
 

Pre Course 
Knowledge 

 
Pre Course
Confidence 

Post 
Course 

Knowledge 

Post 
Course 

Confidence 
Various approaches to modeling 
dynamical systems.  

 
2.83 

 
2.75 

 
3.67 

 
3.67 

Distinctions between a model and a real 
dynamical system. 

 
3.00 

 
2.92 

 
3.67 

 
3.58 

Comparison between the predicted 
response of a mathematical model and 
the response of a physical system. 

 
 

2.75 

 
 

2.92 

 
 

3.75 

 
 

3.75 
 

Table 5: Pre and post course knowlwdge and confidence (average score). 
 

Concluding Remarks  
 
We have presented our sequence of laboratories for identification and control one, two, and three 
degree of freedom mass-spring-damper systems. This sequence of experiments has a number of 
practical benefits. By exciting these systems with various frequencies, the students understand 
transient response and sinusoidal steady state in terms of the physical behavior of mechanical 
systems. The students also develop a better appreciation for the use of Bode plots. Nearly all of 
the parameters can be estimated in at least two ways and the students must compare these 
estimates to check for consistency. Finally, the students use state variable feedback to control the 
systems and compare the difference between the response of the model and the response of the 
real system. 
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