Axisymmetric problem satisfying laplace's equation :
( no f - dependence in the equation : ¶2V/¶ r2 + 1/r ¶ V/¶ r + ¶2V/¶ z2 = 0 )
All derivatives evaluated at the center of the cell(r,z). Dr = a and Dz = b .
A taylor series expansion gives
V(r+a,z+b) = V(r,z) + a ¶ V/¶ r + b ¶ V/¶ z + ab/2 ¶2V/¶ r¶ z + a2/2 ¶2V/¶ r2 + b2/2 ¶2V/¶ z2 .
+ higher terms. In different notation we have
V(r,z+b) = V(r,z) + b ¶V/¶z + 1/2 b2 ¶2V/¶ z2 = Vo + b Vz + 1/2 b2 Vzz .
V(r,z-b) = V(r,z) - b ¶V/¶z + 1/2 b2 ¶2V/¶ z2 = Vo - b Vz + 1/2 b2 Vzz .
Then Vzz = ( V(r,z+b) + V(r,z-b) - 2Vo)/b2 .
V(r+a,z) = V(r,z) + a ¶V/¶r + 1/2 a2 ¶2V/¶ r2 + ... = Vo + aVr + 1/2 a2 Vrr + ..
V(r-a,z) = V(r,z) - a ¶V/¶r + 1/2 a2 ¶2V/¶ r2 + ... = Vo - aVr + 1/2 a2 Vrr + .. .
Now we find
Vr = (V(r+a,z)-V(r-a,z))/(2a), and
Vrr = (V(r+a,z)+V(r-a,z) - 2 Vo)/a2 .
Since Laplace'e equation with no phi dependence is Vrr + 1/r Vr + Vzz = 0, we have
0 = (V(r+a,z)+V(r-a,z) -2 Vo)/a2 +1/r (V(r+a,z)-V(r-a,z))/(2a) +(V(r,z+b) + V(r,z-b) - 2Vo)/b2 .
This can be solved for Vo:
Vo( 2/a2 + 2/b2)= (V(r+a,z)+V(r-a,z))/a2 +1/r (V(r+a,z)-V(r-a,z))/(2a) +( V(r,z+b) +V(r,z-b))/b2 .
When we are away from r = 0 and z = 0 we have
V(r,z) = Crr (V(r+a,z)+V(r-a,z)) +Cr/r (V(r+a,z)-V(r-a,z)) + Czz (V(r,z+b)+V(r,z-b)) ,
where the constants Crr, Cr, and Czz are
Crr = 1/2 b2/(a2 + b2), Cr = 1/4 ab2/( a2 + b2), and Czz = 1/2 a2/( a2 + b2) .
At r=0, catastrophe? If Vr(0) ¹ 0, then at r=0 Vr/r definitely blows up. For Laplace's equation to hold, Vr(0) = 0. Now let s equal the radial distance from the z-axis and taylor-expand Vr: (s<<1)
Vr(s) = Vr(0) + s Vrr(0) + higher powers of s,
and since Vr(0) = 0, we have Vr(s) = s Vrr(0) + ... . Laplace's equation at s is
Vrr(s) + 1/s( Vr(0) + s Vrr(0)) + Vzz(s) .
Now using Vr(0) = 0 we see that for tiny s near r=0 we are ok because the limit of s->0 gives Vrr(0) + Vrr(0) + Vzz(0) , or
2 Vrr + Vzz = 0
Another way to deal with r=0 is to sit on the z-axis and write Vxx + Vyy + Vzz = 0.
Since we are at r=0, an x-derivative is identical to a y-derivative and also identical to an r-derivative. This means that Vxx = Vrr = Vyy. Then Laplace's equation becomes
2 Vrr + Vzz = 0 at r=0.
At r=0 we have V(0+a,z) = Vo + 0 + 1/2 a2 Vrr, so Vrr = (2/a2) (V(0+a,z)-Vo) .
At r=0 for 2Vrr + Vzz = 0, we find
0 = 2 (2/a2) (V(0+a,z)-Vo) + ( V(0,z+b) + V(0,z-b) - 2Vo)/b2 . Then Vo is found to be
Vo = [(4/a2)V(0+a,z) + (V(0,z+b) + V(0,z-b))/b2]/[4/a2 + 2/b2] . Or
V(0,z) = Cro V(0+a,z) + Czo (V(0,z+b) + V(0,z-b)), where
Cro = 2b2/(a2+2b2) and Czo = 1/2 a2/(a2+2b2) .
At z = 0. Where we have symmetry in the z-axis, like z=0 in the mid-plane of a cylindrical pipe, V(r,z) = V(r,-z), and Vz(r,0) = 0. Using the taylor expansion for V(r,0+b) and V(r,0-b), we find
Vzz(r,0) = 2 (V(r,0+b) - Vo)/b2 . Therefore at z = 0
V(r,0) = Crr (V(r+a,0)+V(r-a,0)) +Cr/r (V(r+a,0)-V(r-a,0)) + 2Czz V(r,0+b) .
At r=0 and z = 0, we solve 2Vrr + Vzz = 0. V(0,0+b) = Vo + 0 + 1/ 2 b2 Vzz, and
Vzz = (V(0,0+b)-Vo) (2/b2), and Vrr = (2/a2)(V(0+a,0)-Vo) . Thus
0 = 2 (2/a2)(V(0+a,0)-Vo) + (V(0,0+b)-Vo) (2/b2) . Then
Vo = [ 4/a2 V(0+a,0) + 2/b2 V(0,0+b) ] / [4/a2 + 2/b2] . Therefore
V(0,0) = Cro V(0+a,0) + 2Czo V(0,0+b) .