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What am I going to show you?

e Pohlig-Hellman exponentiation cipher

e Fermat’s Little Theorem

e Necessary ideas for RSA

e One way to mix mathematics and cryptog-
raphy

e A neat “magic trick” 7



What comes before?

e Shift ciphers

e Modular arithmetic

e Multiplicative ciphers

e Euclidean algorithm and multiplicative in-
Verses

e Block ciphers (e.g. Hill cipher)

e Private-key vs. public-key ciphers



Pohlig-Hellman exponentiation cipher (1978)
e Private key block cipher
o m letters — 2m-digit number
e Example: m = 2, blocks are 4 digit hum-
bers
O ca — 0200
O ts — 1918
O an — 0013
O dd — 0303

0O og — 1406

O sx — 1803



Encryption

e Pick a prime number larger than the largest
possible block

e €.g. p> 2525, say p = 3001

e Pick a key, e

e Shift ciphers: add key.
Multiplicative ciphers: multiply by key.
Exponential cipher: C' = P¢ mod p.
(C is ciphertext block; P is plaintext block)



o Let e=7, then
0 (0200)7 = 1640
0 (1918)" = 0213
0 (0013)7 = 0608
0 (0303)7 = 1140
0 (1406)7 = 2918

0 (1823)7 = 0094

mod 3001

mod 3001

mod 3001

mod 3001

mod 3001

mod 3001



Decryption

e Now we have ciphertext. Recipient needs
to recover plaintext P.

e Need to be able to take e-th roots!
e Cl/e mod p doesn’'t make sense.
e Need an inverse of some sort. What sort?

e Need a number d such that C¢ =P mod p
& (P)Y=P mod p
& Pfl=P modp
o Pedp—1=1 modyp
& ped—1 =1 modyp

e SO it's very important to know what num-
bers x have P =1 mod p



Theorem (Fermat’s Little Theorem, 1640) If
p IS a prime number and a is a positive
integer, pta, then a?~1 =1 mod p.

“Proof by Example” 3°=1 mod 7
Start with 1,2,3,4,5,6.
Multiply each by 3 mod 7: 3,6,2,5,1,4.
Second row is a rearrangement of the first!

S01:-2:-3-4.5-6=3-6-2-5-1-4 mod7
=(3-1)(3-2)(3-3)(3)(3-5)(3-6) mod 7
=30.1.2.3.4.5.6 mod 7.

All of k=1,2,3,4,5,6 have gcd(k,7) = 1,

so can multiply by their inverses to cancel.
Thus 1=3% mod 7

Real Proof (if desired) (pretty much the samel)



Now what do we need to decrypt?

e Need P¢4~1 =1 modp

e This works if ed—1 = k(p—1) because then
ped—1 = pk(p=1) mod p
= (PP=1)% mod p
= 1% mod p
=1 modyp

eecd—1=k(p—1) meansed=1 modp-—1
< d=e modp—1 (not mod p!)

e SO for decryption we figure out
d=e modp-—1
using gcd(e,p — 1), which had better =1

and let P=C%=C® mod p



e Luckily, if p=3001, e=7,
then gcd(7,3000) = 1 so we can decrypt

e d=¢=2143 mod p—1 = 3000 (using the
Euclidean algorithm)
0 (1640)2143 = 0200 mod 3001 — ca
0 (0213)2143 =1918 mod 3001 — ts
0 (0608)2143 = 0013 mod 3001 — an
0 (1140)2143 = 0303 mod 3001 — dd
O (2918)2143 = 1406 mod 3001 — og

0 (0094)2143 = 1823 mod 3001 — sx

e Magic! But now you know the trick.



What comes next?

e Security: the discrete log problem

e EXxponentiation with composite moduli

e \Where Fermat's Little Theorem breaks

e [ he Euler phi function

e Euler’'s Theorem

e RSA

e Fast exponentiation

e Fast primality testing
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